OFFSET
0,3
COMMENTS
Equivalently, n^6 mod 30. - Ray Chandler, Dec 27 2023
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (-1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1).
FORMULA
From Reinhard Zumkeller, Apr 24 2009: (Start)
a(m*n) = a(m)*a(n) mod 30.
a(15*n+k) = a(15*n-k) for k<=15*n.
a(n+30) = a(n). (End)
a(n)= -a(n-1) +a(n-3) +a(n-4) -a(n-6) -a(n-7) +a(n-9) +a(n-10) -a(n-12) -a(n-13) +a(n-15) +a(n-16) -a(n-18) -a(n-19) +a(n-21) +a(n-22) -a(n-24) -a(n-25) +a(n-27) +a(n-28). - R. J. Mathar, Jul 23 2009
MATHEMATICA
Table[Mod[n^2, 30], {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Apr 27 2011 *)
LinearRecurrence[{-1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1}, {0, 1, 4, 9, 16, 25, 6, 19, 4, 21, 10, 1, 24, 19, 16, 15, 16, 19, 24, 1, 10, 21, 4, 19, 6, 25, 16, 9}, 80] (* Ray Chandler, Aug 26 2015 *)
PowerMod[Range[0, 80], 6, 30] (* or *) PadRight[{}, 80, {0, 1, 4, 9, 16, 25, 6, 19, 4, 21, 10, 1, 24, 19, 16, 15, 16, 19, 24, 1, 10, 21, 4, 19, 6, 25, 16, 9, 4, 1}] (* Harvey P. Dale, Jul 10 2023 *)
PROG
(Sage) [power_mod(n, 2, 30)for n in range(0, 75)] # Zerinvary Lajos, Nov 03 2009
(PARI) a(n)=n^2%30 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved