

A069286


Decimal expansion of constant rho satisfying Gaussian Phi(rho * sqrt(2))= erf(rho)= 1/2.


2



4, 7, 6, 9, 3, 6, 2, 7, 6, 2, 0, 4, 4, 6, 9, 8, 7, 3, 3, 8, 1, 4, 1, 8, 3, 5, 3, 6, 4, 3, 1, 3, 0, 5, 5, 9, 8, 0, 8, 9, 6, 9, 7, 4, 9, 0, 5, 9, 4, 7, 0, 6, 4, 4, 7, 0, 3, 8, 8, 2, 6, 9, 5, 9, 1, 9, 3, 8, 3, 4, 4, 7, 7, 7, 4, 6, 4, 6, 7, 3, 3, 4, 8, 8, 6, 9, 5, 9, 1, 5, 8, 6, 9, 9, 8, 9, 0, 0, 9, 9, 4, 8, 0, 3, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

In BronsteinSemendjajew Gaussian Phi is the probability integral, i.e. 2 * Normal Distribution Function.


REFERENCES

BronsteinSemendjajew, Taschenbuch der Mathematik, 7th German ed. 1965, ch. 6.1.2


LINKS

Table of n, a(n) for n=0..104.
Eric Weisstein's World of Mathematics, Probable Error t= rho * sqrt(2)= 06745...
Eric Weisstein's World of Mathematics, Normal Distribution Function (World of Mathematics).
Eric Weisstein's World of Mathematics, Inverse Erf


EXAMPLE

0.4769362762044698733814183536431305598089697490594706447...


MATHEMATICA

RealDigits[ InverseErf[1/2], 10, 105][[1]] (from Robert G. Wilson v Oct 11 2004)


CROSSREFS

Cf. A069287 (continued fraction), A007680.
Sequence in context: A200353 A081845 A140877 * A079354 A122460 A063845
Adjacent sequences: A069283 A069284 A069285 * A069287 A069288 A069289


KEYWORD

nonn,cons


AUTHOR

Frank Ellermann, Mar 13 2002


STATUS

approved



