login
Pseudo-Latin stable matchings.
4

%I #22 Apr 16 2024 16:32:12

%S 1,2,3,10,12,32,42,268,288,656,924,4360,3816,11336,13536,195472,

%T 200832,423104,618576,2404960,2506464,6994784,8820864,85524160,

%U 60669696,145981952,194348448,1073479840

%N Pseudo-Latin stable matchings.

%C There is a possibility that some of the terms in this sequence from a(7) onward are incorrect. See A371810 for an alternative. - _Sean A. Irvine_, Apr 16 2024

%H Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, <a href="https://arxiv.org/abs/2108.02654">The Stable Matching Problem and Sudoku</a>, arXiv:2108.02654 [math.HO], 2021.

%H Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, <a href="https://arxiv.org/abs/2201.00645">Sequences of the Stable Matching Problem</a>, arXiv:2201.00645 [math.HO], 2021.

%H Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, <a href="https://doi.org/10.1080/07468342.2023.2261183">The Stable Marriage Problem and Sudoku</a>, College Math. J. (2023).

%H E. G. Thurber, <a href="https://doi.org/10.1016/S0012-365X(01)00194-7">Concerning the maximum number of stable matchings in the stable marriage problem</a>, Discrete Math., 248 (2002), 195-219.

%Y Cf. A371810.

%K nonn,more

%O 1,2

%A _N. J. A. Sloane_, Apr 12 2002