login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068943
a(n) = f(n, n, n), where f is the generalized super falling factorial (see comments for definition.).
4
1, 2, 24, 331776, 2524286414780230533120, 18356962141505758798331790171539976807981714702571497465907439808868887035904000000
OFFSET
1,2
COMMENTS
f(x, p, r) = Product_{m = 1..p} (x-m+1)^binomial(m+r-2, m-1), for x > 0, x >= p >= 0, r > 0. f is a generalization of both the multi-level factorial A066121(n, k) and the falling factorial A068424(x, n). f(n, n, 1) = n! and f(n, n, 2) = the superfactorial A000178(n). In general f(n, n, r) = A066121(n+r, r+1). f(x, p, 1) = A068424(x, p) and f(x, p, r+1) = Product_{i = 0..p-1} f(x-i, p-i, r).
a(8) has 1213 digits. - Michael S. Branicky, Apr 09 2023
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..7
FORMULA
a(n) = Product_{m = 1..n} (n-m+1)^binomial(m+n-2, m-1).
EXAMPLE
a(3) = 24 since (4-1)^binomial(1+3-2,1-1) * (4-2)^binomial(2+3-2,2-1) * (4-3)^binomial(3+3-2,3-1) = 3^1 * 2^3 * 1 = 24.
MAPLE
f := (x, p, r)->`if`(r<>0, `if`(p>0, product((x-m+1)^binomial(m+r-2, m-1), m=1..p), 1), x); f(n, n, n);
PROG
(PARI) a(n)=prod(m=1, n, (n-m+1)^binomial(m+n-2, m-1)) \\ Charles R Greathouse IV, Oct 30 2021
(Python)
from math import comb, prod
def a(n): return prod((n-m+1)**comb(m+n-2, m-1) for m in range(1, n+1))
print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Apr 09 2023
CROSSREFS
Sequence in context: A123851 A258824 A120122 * A373796 A100815 A365617
KEYWORD
nonn
AUTHOR
Francois Jooste (phukraut(AT)hotmail.com), Mar 09 2002
EXTENSIONS
Edited by David Wasserman, Mar 14 2003
STATUS
approved