login
A068521
Decimal expansion of agm(1, 2).
10
1, 4, 5, 6, 7, 9, 1, 0, 3, 1, 0, 4, 6, 9, 0, 6, 8, 6, 9, 1, 8, 6, 4, 3, 2, 3, 8, 3, 2, 6, 5, 0, 8, 1, 9, 7, 4, 9, 7, 3, 8, 6, 3, 9, 4, 3, 2, 2, 1, 3, 0, 5, 5, 9, 0, 7, 9, 4, 1, 7, 2, 3, 8, 3, 2, 6, 7, 9, 2, 6, 4, 5, 4, 5, 8, 0, 2, 5, 0, 9, 0, 0, 2, 5, 7, 4, 7, 3, 7, 1, 2, 8, 1, 8, 4, 4, 8, 4, 4, 4, 3, 2, 8, 1, 8
OFFSET
1,2
COMMENTS
This is the arithmetic-geometric mean of 1 and 2, given by u(1) = 1, v(1) = 2, u(n+1) = (u(n)+v(n))/2, v(n+1) = sqrt(u(n)*v(n)); agm(1,2) = lim u(n) = lim v(n).
LINKS
Eric Weisstein's World of Mathematics, Arithmetic-Geometric Mean
EXAMPLE
1.45679103104690686918643238326508197497386394322130559079417238326792645458025...
MAPLE
evalf(GaussAGM(1, 2), 144); # Alois P. Heinz, Jul 05 2023
evalf(Pi/EllipticK(sqrt(3)/2), 107); # or
evalf(3*Pi/(4*EllipticK(1/3)), 107); # Vaclav Kotesovec, Mar 28 2024
MATHEMATICA
RealDigits[ ArithmeticGeometricMean[1, 2], 10, 107] // First (* Jean-François Alcover, Feb 06 2013 *)
RealDigits[N[3Pi/(4EllipticK[1/9]), 107]][[1]] (* Jean-François Alcover, Jun 02 2019 *)
RealDigits[N[Pi/EllipticK[3/4], 107]][[1]] (* or *)
RealDigits[N[Pi/(2*EllipticK[-3]), 107]][[1]] (* Vaclav Kotesovec, Mar 28 2024 *)
PROG
(PARI) agm(1, 2) \\ Charles R Greathouse IV, Mar 03 2016
CROSSREFS
Cf. A084895 (agm(1,3)), A084896 (agm(1,4)), A084897 (agm(1,5)).
Sequence in context: A075341 A309358 A143789 * A196697 A068318 A347932
KEYWORD
easy,nonn,cons
AUTHOR
Benoit Cloitre, Mar 21 2002
STATUS
approved