This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068491 Expansion of Molien series for a certain 4-D group of order 96. 1
 1, 1, 2, 3, 6, 8, 13, 17, 25, 31, 42, 52, 68, 81, 101, 119, 145, 168, 200, 229, 268, 303, 349, 392, 447, 497, 560, 619, 692, 760, 843, 921, 1015, 1103, 1208, 1308, 1426, 1537, 1667, 1791, 1935, 2072, 2230, 2381, 2554, 2719, 2907, 3088, 3293, 3489, 3710, 3923, 4162 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The first formula intersperses the terms with zeros, the second formula doesn't. - Colin Barker, Apr 01 2015 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,2,-2,1,0,-1,2,-1). FORMULA G.f.: (x^22+x^16+x^14+x^12+x^10+x^8+x^6+1)/((1-x^2)*(1-x^4)*(1-x^8)*(1-x^12)). G.f.: (x^10-x^9+x^8+x^6+x^4+x^2-x+1) / ((x-1)^4*(x+1)^2*(x^2-x+1)*(x^2+1)*(x^2+x+1)). - Colin Barker, Apr 01 2015 EXAMPLE 1 + x^2 + 2*x^4 + 3*x^6 + 6*x^8 + 8*x^10 + 13*x^12 + 17*x^14 + 25*x^16 + 31*x^18 + ... MATHEMATICA LinearRecurrence[{2, -1, 0, 1, -2, 2, -2, 1, 0, -1, 2, -1}, {1, 1, 2, 3, 6, 8, 13, 17, 25, 31, 42, 52}, 60] (* Harvey P. Dale, Aug 29 2016 *) PROG (MAGMA) // Definition of group: F := CyclotomicField(12); w := al^4; i := al^3; s3 := (1+2*w)/i; M := GeneralLinearGroup(4, F); g1 := M![ 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0 ]; g2 := M![ -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0 ]; g3 := M![ 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1 ]; H := M![ 0, -1/s3, -1/s3, -1/s3, 1/s3, 0, 1/s3, -1/s3, 1/s3, -1/s3, 0, 1/s3, 1/s3, 1/s3, -1/s3, 0 ]; G := sub; (PARI) Vec((x^10-x^9+x^8+x^6+x^4+x^2-x+1) / ((x-1)^4*(x+1)^2*(x^2-x+1)*(x^2+1)*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Apr 01 2015 CROSSREFS Sequence in context: A036957 A251260 A022943 * A239952 A240076 A266771 Adjacent sequences:  A068488 A068489 A068490 * A068492 A068493 A068494 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Dec 31 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.