OFFSET
1,1
COMMENTS
Note that nontrivial solutions always exist for primes of the form 3k + 1. - Jianing Song, Apr 20 2019
From Jianing Song, Nov 08 2022: (Start)
Proof: for prime p > 3, write f_p(x) = ((x+1)^p - x^p - 1)/p; f_p(x) is a polynomial in Z[x]. We have f_p(w) = f_p(w^2) = 0, where w is a primitive cube root of 1, so f_p(x) divides x^2 + x + 1 in Q[x]. Since x^2 + x + 1 is a primitive polynomial (having coprime coefficients), it follows from Gauss's lemma for polynomials that f_p(x) divides x^2 + x + 1 in Z[x]. As a result, if p == 1 (mod 3) and p | (x^2 + x + 1) for some x, then p^2 | ((x+1)^p - x^p - 1).
For prime p > 2, the equation x^p + y^p = z^p has nontrivial solutions over (Z_p)* (the p-adic integers not divisible by p) if and only if there exist nontrivial solutions to the congruence (x+1)^p - x^p == 1 (mod p^2). (End)
LINKS
Jianing Song, Table of n, a(n) for n = 1..1397 (all terms up to 2*10^5; first 74 terms from Robert G. Wilson v)
K. S. Brown, On the Density of Some Exceptional Primes
PROG
(PARI) isA068209(n) = if(isprime(n) && n%3==2, for(a=1, n-2, if(Mod(a+1, n^2)^n - Mod(a, n^2)^n==1, return(1)))); return(0) \\ Jianing Song, Nov 08 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Mar 23 2002
EXTENSIONS
Definition corrected by Mike Oakes, Feb 12 2009
STATUS
approved