login
A068190
Largest number whose digit product equals n; a(n)=0 if no such number exists, e.g., when n has a prime factor larger than 7; no digit=1 is permitted to avoid an infinite number of solutions.
3
0, 2, 3, 22, 5, 32, 7, 222, 33, 52, 0, 322, 0, 72, 53, 2222, 0, 332, 0, 522, 73, 0, 0, 3222, 55, 0, 333, 722, 0, 532, 0, 22222, 0, 0, 75, 3322, 0, 0, 0, 5222, 0, 732, 0, 0, 533, 0, 0, 32222, 77, 552, 0, 0, 0, 3332, 0, 7222, 0, 0, 0, 5322, 0, 0, 733, 222222, 0, 0, 0, 0, 0
OFFSET
1,2
LINKS
FORMULA
If a solution exists, a(n) is the concatenation of prime factors with repetitions and in order of magnitude, otherwise a(n)=0.
MATHEMATICA
Array[If[#[[-1, 1]] > 7, 0, FromDigits@ Reverse@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, #]] &@ FactorInteger@ # &, 69] /. 1 -> 0 (* Michael De Vlieger, Dec 08 2018 *)
PROG
(PARI) a(n) = {my(res = []); for(i=2, 9, v = valuation(n, i); if(v > 0, res = concat(vector(v, j, i), res); n/=i^v)); if(n==1, fromdigits(res), 0)} \\ David A. Corneth, Jul 31 2017
KEYWORD
base,nonn
AUTHOR
Labos Elemer, Feb 19 2002
EXTENSIONS
a(36) corrected by David A. Corneth, Jul 31 2017
STATUS
approved