This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068190 Largest number whose digit product equals n; a(n)=0 if no such number exists, e.g., when n has a prime factor larger than 7; no digit=1 is permitted to avoid an infinite number of solutions. 3
 0, 2, 3, 22, 5, 32, 7, 222, 33, 52, 0, 322, 0, 72, 53, 2222, 0, 332, 0, 522, 73, 0, 0, 3222, 55, 0, 333, 722, 0, 532, 0, 22222, 0, 0, 75, 3322, 0, 0, 0, 5222, 0, 732, 0, 0, 533, 0, 0, 32222, 77, 552, 0, 0, 0, 3332, 0, 7222, 0, 0, 0, 5322, 0, 0, 733, 222222, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS David A. Corneth, Table of n, a(n) for n = 1..10000 FORMULA If a solution exists, a(n) is the concatenation of prime factors with repetitions and in order of magnitude, otherwise a(n)=0. MATHEMATICA Array[If[#[[-1, 1]] > 7, 0, FromDigits@ Reverse@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, #]] &@ FactorInteger@ # &, 69] /. 1 -> 0 (* Michael De Vlieger, Dec 08 2018 *) PROG (PARI) a(n) = {my(res = []); for(i=2, 9, v = valuation(n, i); if(v > 0, res = concat(vector(v, j, i), res); n/=i^v)); if(n==1, fromdigits(res), 0)} \\ David A. Corneth, Jul 31 2017 CROSSREFS Cf. A001222, A002473, A007954, A067734, A068183-A068187, A068189-A068191. Sequence in context: A073647 A073646 A037276 * A084796 A084797 A163902 Adjacent sequences:  A068187 A068188 A068189 * A068191 A068192 A068193 KEYWORD base,nonn AUTHOR Labos Elemer, Feb 19 2002 EXTENSIONS a(36) corrected by David A. Corneth, Jul 31 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 19:35 EDT 2019. Contains 327981 sequences. (Running on oeis4.)