login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067921
Engel expansion of sqrt(Pi/2).
1
1, 4, 76, 134, 213, 1649, 1955, 2041, 32363, 217167, 760577, 1633080, 6412486, 24932290, 25544312, 376841489, 426956719, 472747939, 765965856, 2708004694, 5814287795, 14630348817, 21857959576, 92077240148, 184486528542
OFFSET
1,2
LINKS
MATHEMATICA
EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]} &, {Ceiling[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; EngelExp[N[Sqrt[Pi/2], 7!], 50] (* G. C. Greubel, Jan 12 2017 *)
PROG
(PARI) : s=sqrt(asin(1)); for(i=1, 30, s=s*ceil(1/s)-1; print1(ceil(1/s), ", "); );
CROSSREFS
See A006784 for explanation of Engel expansions.
Sequence in context: A191505 A100323 A262073 * A317903 A101718 A094160
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Mar 03 2002
STATUS
approved