%I #34 Sep 08 2022 08:45:05
%S 2,-1,-78,880,-4656,-14304,-423936,8342720,711956736,-615707136,
%T 21057138688,-4663930678272,211912980656128,-9178450735677440,
%U 40005919124799488,83013253447139328,-8525111273818357760,-800258888289188708352,-15170733077495639179264
%N Determinant of n X n matrix containing the first n^2 primes in increasing order.
%C The first column contains the first n primes in increasing order, the second column contains the next n primes in increasing order, etc. Equivalently, first row contains first n primes in increasing order, second row contains next n primes in increasing order, etc. Sequences of determinants of matrices specifically containing primes include A024356 (Hankel matrix), A067549 (first n primes on diagonal, other elements 1), A066933 (cyclic permutations of first n primes in each row) and A067551 (first n primes on diagonal, other elements 0).
%H Robert Israel, <a href="/A067276/b067276.txt">Table of n, a(n) for n = 1..459</a>
%e a(3) = -78 because det[[2,7,17],[3,11,19],[5,13,23]] = -78 (= det[[2,3,5],[7,11,13],[17,19,23]], the determinant of the transpose.).
%p seq(LinearAlgebra:-Determinant(Matrix(n,n,(i,j) -> ithprime(n*(i-1)+j))),n=1..20); # _Robert Israel_, Jul 12 2017
%t Table[ Det[ Partition[ Array[Prime, n^2], n]], {n, 19}] (* _Robert G. Wilson v_, May 26 2006 *)
%o (PARI) for(n=1,20,k=0; m=matrix(n,n,x,y, prime(k=k+1)); print1(matdet(m), ", ")) /* The matrix initialization command above fills columns first: Variables (such as) x and y take on values 1 through n for rows and columns, respectively, with x changing more rapidly and they must be specified even though the 5th argument is not an explicit function of them here. */
%o (Magma) [ Determinant( Matrix(n, n, [ NthPrime(k): k in [1..n^2] ]) ): n in [1..19] ]; // _Klaus Brockhaus_, May 12 2010
%o (Python)
%o from sympy.matrices import Matrix
%o from sympy import sieve
%o def a(n):
%o sieve.extend_to_no(n**2)
%o return Matrix(n, n, sieve[1:n**2+1]).det()
%o print([a(n) for n in range(1, 20)]) # _Indranil Ghosh_, Jul 31 2017
%Y Cf. A024356, A067549, A066933, A067551, A114533.
%Y Cf. A119894, A118770, A118772, A118779.
%K easy,sign
%O 1,1
%A _Rick L. Shepherd_, Feb 21 2002