

A067260


Numbers n such that sigma(n+1)=2*phi(n).


0



13, 43, 109, 151, 589, 883, 2143, 2725, 4825, 4921, 9541, 13189, 21637, 22249, 22489, 29971, 30229, 33787, 36247, 72541, 73513, 83287, 94489, 109213, 113269, 117367, 189103, 190489, 198457
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

If p=2^n+3 and both numbers p & q=(1/2)*(p^23p2) are primes then q is in the sequence, because sigma(q+1)=sigma((1/2)*(p3)*p)= sigma(2^(n1)*p)=(2^n1)*(p+1)=(p4)*(p+1)=p^23p4=2q2=2*phi(q). 13, 43, 151, 2143 & 34360131583 are such terms corresponding to n = 2, 3, 4, 6 & 18.  Farideh Firoozbakht, Feb 16 2008


LINKS

Table of n, a(n) for n=1..29.


MATHEMATICA

Do[If[DivisorSigma[1, n+1]==2*EulerPhi@n, Print[n]], {n, 200000}]  Farideh Firoozbakht, Feb 16 2008


CROSSREFS

Cf. A135241.
Sequence in context: A106734 A066465 A023262 * A135241 A225774 A268256
Adjacent sequences: A067257 A067258 A067259 * A067261 A067262 A067263


KEYWORD

nonn


AUTHOR

Benoit Cloitre, Feb 21 2002


STATUS

approved



