login
A067227
n is prime and remains prime when its leading digit is replaced by each of 2, 4 and 8.
1
13, 23, 43, 53, 73, 83, 139, 157, 163, 239, 257, 263, 439, 457, 463, 557, 563, 739, 757, 839, 857, 863, 1297, 1423, 1447, 1663, 1861, 1999, 2111, 2243, 2273, 2297, 2423, 2447, 2663, 2861, 2969, 2999, 4111, 4243, 4273, 4297, 4423, 4447, 4663, 4861, 4969
OFFSET
1,1
COMMENTS
2, 4 and 8 were chosen because they are powers of 2.
LINKS
EXAMPLE
53 is prime and so are 23, 43, 83, so 53 is a term of the sequence.
MATHEMATICA
(*replaces the leading digit of n by m*) f[n_, m_] := FromDigits[Flatten[Append[IntegerDigits[m], Drop[IntegerDigits[n], 1]]]]; Select[Range[10^4], PrimeQ[ # ] && PrimeQ[f[ #, 2]] && PrimeQ[f[ #, 4]] && PrimeQ[f[ #, 8]] & ]
Select[Prime[Range[700]], AllTrue[FromDigits/@Table[Join[{i}, Rest[ IntegerDigits[ #]]], {i, {2, 4, 8}}], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 04 2017 *)
CROSSREFS
Sequence in context: A165350 A236418 A112394 * A240113 A256177 A320752
KEYWORD
base,nonn
AUTHOR
Joseph L. Pe, Feb 20 2002
EXTENSIONS
Offset corrected to 1 and title simplified by M. F. Hasler, Nov 01 2014
STATUS
approved