login
Smallest prime factor of repunit(n) = (10^n-1)/9 (A002275).
13

%I #44 Aug 02 2024 11:52:12

%S 11,3,11,41,3,239,11,3,11,21649,3,53,11,3,11,2071723,3,

%T 1111111111111111111,11,3,11,11111111111111111111111,3,41,11,3,11,

%U 3191,3,2791,11,3,11,41,3,2028119,11,3,11,83,3,173,11,3,11,35121409,3,239

%N Smallest prime factor of repunit(n) = (10^n-1)/9 (A002275).

%C a(n) = A003020(n) = R_(n) iff n is a term of A004023. - _Bernard Schott_, May 22 2022

%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers.

%H Ray Chandler, <a href="/A067063/b067063.txt">Table of n, a(n) for n = 2..508</a> (first 499 terms from T. D. Noe - corrected 7 terms)

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/repunit">Factorizations of 11...11 (Repunit)</a>.

%H Yousuke Koide, <a href="https://repunit-koide.jimdofree.com/">Factorizations of Repunit Numbers</a>

%H Amarnath Murthy, <a href="http://fs.gallup.unm.edu/SNJ11.pdf">On the divisors of Smarandache Unary Sequence</a>, Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000, page 184.

%H Samuel S. Wagstaff, <a href="http://www.cerias.purdue.edu/homes/ssw/cun/index.html">the Cunningham Project</a>

%F a(3n) = 3, a(6n-4) = a(6n-2) = 11, a(30n-25) = a(30n-5) = 41, ... - _M. F. Hasler_, Nov 21 2006

%F a(n) = A020639(A002275(n)). - _Ray Chandler_, Apr 22 2017

%p 'min(op(numtheory[factorset]((10^k-1)/9)))'$k=2..50; # _M. F. Hasler_, Nov 21 2006

%t a = {}; Do[a = Append[a, FactorInteger[(10^n - 1)/9][[1, 1]]], {n, 2, 111} ]; a

%t Table[FactorInteger[FromDigits[PadRight[{},n,1]]][[1,1]],{n,2,50}] (* _Harvey P. Dale_, Dec 10 2013 *)

%Y Cf. A002275, A004023, A020639, A102380.

%Y Largest factor: A003020.

%K nonn

%O 2,1

%A _Amarnath Murthy_, Jan 03 2002

%E More terms from _Robert G. Wilson v_, Jan 04 2002