OFFSET
1,2
COMMENTS
Since e < 3, one can prove that a(n) is even for large enough n; in particular if n > 370 then a(n) is even, if n > 1568 then a(n) is divisible by 4, and so forth. Generally, if k > 2^m * 3^floor(((1 - log 2)m + log 2)/(log 3 - 1)) is in this sequence then 2^m divides k. - Charles R Greathouse IV, Sep 04 2015
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..1000
EXAMPLE
For n = 300 = 2^2 * 3 * 5^2, floor(log(300)) = 5 = 2 + 1 + 2, hence 300 is in the sequence.
MATHEMATICA
Select[Range[10^4], PrimeOmega[#]==Floor[Log[#]]&] (* Enrique Pérez Herrero, Jan 08 2013 *)
PROG
(PARI) n=0; for (m=1, 10^10, if (bigomega(m) == floor(log(m)), write("b066929.txt", n++, " ", m); if (n==1000, return)) ) \\ Harry J. Smith, Apr 07 2010
(PARI) is(n)=bigomega(n)==log(n)\1 \\ Charles R Greathouse IV, Sep 04 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 23 2002
STATUS
approved