login
A066562
Smallest Bell number (A000110) divisible by n, if such a number exists, otherwise 0.
5
1, 2, 15, 52, 5, 4140, 203, 0, 4140, 4140, 10293358946226376485095653, 4140, 52, 51724158235372, 15, 0, 4506715738447323, 4140, 21147, 4140, 21147, 1052928518014714166107781298021583534928402714242132, 4140, 0, 115975, 52, 82864869804, 51724158235372, 203, 4140
OFFSET
1,2
COMMENTS
No Bell number is divisible by 8. - John W. Layman, Jan 02 2002
LINKS
J. W. Layman, Maximum zero strings of Bell numbers modulo primes, J. Comb. Th. A40 (1985),161-168.
G. T. Williams, Numbers generated by the function e^(e^x-1), Am. Math. Monthly 52 (1945),323-327.
MATHEMATICA
b[ n_ ] := Nest[ Factor[ D[ #1, x ] ] &, Exp[ Exp[ x - 1 ] - 1 ], n ] /. (x -> 1); Do[ k = 1; While[ c = b[ k ]; !IntegerQ[ c/n ], k++ ]; Print[ c ], {n, 1, 7} ]
CROSSREFS
Sequence in context: A290631 A116693 A154565 * A073877 A248538 A248539
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Dec 17 2001
EXTENSIONS
More terms from John W. Layman, Jan 02 2002
More terms from David Wasserman, Mar 31 2008
STATUS
approved