|
|
A066562
|
|
Smallest Bell number (A000110) divisible by n, if such a number exists, otherwise 0.
|
|
5
|
|
|
1, 2, 15, 52, 5, 4140, 203, 0, 4140, 4140, 10293358946226376485095653, 4140, 52, 51724158235372, 15, 0, 4506715738447323, 4140, 21147, 4140, 21147, 1052928518014714166107781298021583534928402714242132, 4140, 0, 115975, 52, 82864869804, 51724158235372, 203, 4140
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
No Bell number is divisible by 8. - John W. Layman, Jan 02 2002
|
|
LINKS
|
Vaclav Kotesovec, Table of n, a(n) for n = 1..134
J. W. Layman, Maximum zero strings of Bell numbers modulo primes, J. Comb. Th. A40 (1985),161-168.
G. T. Williams, Numbers generated by the function e^(e^x-1), Am. Math. Monthly 52 (1945),323-327.
|
|
MATHEMATICA
|
b[ n_ ] := Nest[ Factor[ D[ #1, x ] ] &, Exp[ Exp[ x - 1 ] - 1 ], n ] /. (x -> 1); Do[ k = 1; While[ c = b[ k ]; !IntegerQ[ c/n ], k++ ]; Print[ c ], {n, 1, 7} ]
|
|
CROSSREFS
|
Cf. A000110, A327432.
Sequence in context: A290631 A116693 A154565 * A073877 A248538 A248539
Adjacent sequences: A066559 A066560 A066561 * A066563 A066564 A066565
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Amarnath Murthy, Dec 17 2001
|
|
EXTENSIONS
|
More terms from John W. Layman, Jan 02 2002
More terms from David Wasserman, Mar 31 2008
|
|
STATUS
|
approved
|
|
|
|