login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066138 a(n) = 10^(2n) + 10^n + 1. 10
3, 111, 10101, 1001001, 100010001, 10000100001, 1000001000001, 100000010000001, 10000000100000001, 1000000001000000001, 100000000010000000001, 10000000000100000000001, 1000000000001000000000001, 100000000000010000000000001, 10000000000000100000000000001, 1000000000000001000000000000001 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Palindromes whose digit sum is 3

Essentially the same as A135577. - R. J. Mathar Apr 29 2008

From Peter Bala, Sep 25 2015: (Start)

For n >= 1, the simple continued fraction expansion of sqrt(a(n)) = [10^n; 1, 1, 2/3*(10^n - 1), 1, 1, 2*10^n, ...] has period 6. As n increases, the expansion has the large partial quotients 2/3*(10^n - 1) and 2*10^n.

For n >= 1, the continued fraction expansion of sqrt(a(2*n))/a(n) = [0; 1, 10^n - 1, 1, 1, 1/3*(10^n - 4), 1, 4, 1, 1/3*(10^n - 4), 1, 1, 10^n - 1, 2, 10^n - 1, ...] has pre-period of length 3 and period 12 beginning 1, 1, 1/3*(10^n - 4), ....  As n increases, the expansion has the large partial quotients 10^n - 1 and 1/3*(10^n - 4).

A theorem of Kuzmin in the measure theory of continued fractions says that large partial quotients are the exception in continued fraction expansions.

Empirically, we also see exceptionally large partial quotients in the continued fraction expansions of the m-th root of the numbers a(m*n), for m >= 3. For example, it appears that the continued fraction expansion of a(3*n)^(1/3), for n >= 2, begins [10^(2*n); 3*10^n - 1, 1, 0.5*10^(2*n) - 1, 1.44*10^n - 1, 1, ...]. Cf. A000533, A002283 and A168624. (End)

LINKS

Harry J. Smith, Table of n, a(n) for n=0..100

Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).

FORMULA

A168624(n) = a(2*n)/a(n). - Peter Bala, Sep 24 2015

G.f.: (3 - 222*x + 1110*x^2) / ((1 - 100*x)*(1 - 10*x)*(1 - x)). - Vincenzo Librandi, Sep 27 2015

From Colin Barker, Sep 27 2015: (Start)

a(n) = 111*a(n-1)-1110*a(n-2)+1000*a(n-3) for n>2.

G.f.: -3*(370*x^2-74*x+1) / ((x-1)*(10*x-1)*(100*x-1)).

(End)

EXAMPLE

From Peter Bala, Sep 25 2015: (Start)

Simple continued fraction expansions showing large partial quotients:

a(9)^(1/3) =[1000000; 2999, 1, 499999, 1439, 1, 2582643, 1, 1, 1, 2, 3, 3, ...].

a(20)^(1/4) = [10000000000; 39999999999, 1, 3999999999, 16949152542, 2, 1, 2, 6, 1, 4872106, 3, 9, 2, 3, ...].

a(25)^(1/5) = [10000000000; 4999999999999999, 1, 3333333332, 2, 1, 217391304347825, 2, 2, 1, 1, 1, 2, 1, 23980814, 1, 1, 1, 1, 1, 7, ...].

(End)

MATHEMATICA

Table[10^(2 n) + 10^n + 1, {n, 0, 15}] (* Michael De Vlieger, Sep 27 2015 *)

CoefficientList[Series[(3 - 222 x + 1110 x^2)/((1 - 100 x) (1 - 10 x) (1 - x)), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 27 2015 *)

PROG

(PARI) { for (n=0, 100, write("b066138.txt", n, " ", 10^(2*n) + 10^n + 1) ) } \\ Harry J. Smith, Feb 02 2010

(MAGMA) [10^(2*n) + 10^n + 1: n in [0..20]]; // Vincenzo Librandi, Sep 27 2015

(PARI) Vec(-3*(370*x^2-74*x+1)/((x-1)*(10*x-1)*(100*x-1)) + O(x^20)) \\ Colin Barker, Sep 27 2015

CROSSREFS

Cf. A033934, A062397, A000533, A002283, A168624.

Sequence in context: A301612 A180765 A232769 * A114207 A128684 A292336

Adjacent sequences:  A066135 A066136 A066137 * A066139 A066140 A066141

KEYWORD

nonn,base,easy

AUTHOR

Henry Bottomley, Dec 07 2001

EXTENSIONS

Offset changed from 1 to 0 by Harry J. Smith, Feb 02 2010

More terms from Michael De Vlieger, Sep 27 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 17:25 EDT 2019. Contains 321422 sequences. (Running on oeis4.)