The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065923 Bessel polynomial y_n(-3). 5
 1, -2, 19, -287, 6046, -163529, 5402503, -210861146, 9494154073, -484412718869, 27621019129606, -1740608617884047, 120129615653128849, -9011461782602547722, 730048534006459494331, -63523233920344578554519, 5908390803126052265064598 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77. LINKS G. C. Greubel, Table of n, a(n) for n = 0..345 FORMULA a(n) = -(6*n-3)*a(n-1) + a(n-2) for n >= 2. - Sergei N. Gladkovskii, May 17 2013 G.f.: 1/Q(0), where Q(k)= 1 - x + 3*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013 From G. C. Greubel, Aug 14 2017: (Start) a(n) = (1/2)_{n} * (-3)^n *hypergeometric1f1(-n; -2n; -2/3), where (a)_{n} is the Pochhammer symbol. E.g.f.: (1+6*x)^(-1/2) * exp((sqrt(1+6*x) - 1)/3). (End) G.f.: (1/(1-x))*hypergeometric2f0(1,1/2; - ; -6*x/(1-x)^2). - G. C. Greubel, Aug 16 2017 MAPLE f:= gfun:-rectoproc({a(n)= -(6*n-3)*a(n-1) + a(n-2), a(0)=1, a(1)=-2}, a(n), remember): map(f, [\$0..50]); # Robert Israel, Aug 16 2017 MATHEMATICA Table[Pochhammer[1/2, n]*(-6)^n*Hypergeometric1F1[0 - n, -2*n, -2/3], {n, 0, 50}] (* G. C. Greubel, Aug 14 2017 *) PROG (PARI) for(n=0, 50, print1(sum(k=0, n, ((n+k)!/(k! * (n-k)!))*(-3/2)^k), ", ")) \\ G. C. Greubel, Aug 14 2017 CROSSREFS Polynomial coefficients are in A001498. Sequence in context: A239108 A191806 A252710 * A293946 A094476 A304637 Adjacent sequences:  A065920 A065921 A065922 * A065924 A065925 A065926 KEYWORD sign AUTHOR N. J. A. Sloane, Dec 08 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 18:59 EDT 2020. Contains 334832 sequences. (Running on oeis4.)