login
A065194
Limits of the recursion b(i+1)=B_[i](b(i)), where b(1)=n and B_[k+1](j) = B_[k](j), if j <= k; B_[k+1](j) = B_[k](j) + k, if j < k and (j mod 2k) >= k; B_[k+1](j) = B_[k](j) - k, if j < k and (j mod 2k) < k. Set a(n)=0 if b tends to infinity.
6
1, 10, 4, 2, 5, 35, 24, 3, 20, 14, 9, 19, 12, 39, 13, 6, 104, 7, 8, 79, 145, 27, 60, 15, 45, 31, 144, 22, 16, 4339, 28, 46, 25, 70, 29, 479, 17, 2170, 40, 11, 325, 114, 85, 30, 32, 75, 36, 43, 44, 18, 300, 235, 49, 135, 704, 214, 33, 54, 9160, 26, 80, 91, 21, 42, 160
OFFSET
1,2
COMMENTS
If zero never appears in a, then the sequence would be permutation of the naturals and A065191 would be its inverse.
CROSSREFS
KEYWORD
nice,nonn
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Oct 19 2001
STATUS
approved