OFFSET
1,2
COMMENTS
Inverse Moebius transform of A160889. - Vladeta Jovovic, Nov 21 2009
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
László Tóth, Menon's identity and arithmetical sums representing functions of several variables, Rend. Sem. Mat. Univ. Politec. Torino, 69 (2011), 97-110 and arXiv, arXiv:1103.5861 [math.NT], 2011.
László Tóth, On the number of cyclic subgroups of a finite abelian group, arXiv:1203.6201 [math.GR], 2012.
FORMULA
a(n) = Sum_{i|n, j|n, k|n} phi(i)*phi(j)*phi(k)/phi(lcm(i, j, k)), where phi is Euler totient function (cf. A000010).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + (p^2 + p + 1)*((p^(2*e) - 1)/(p^2 - 1)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)/3) * Product_{p prime} (1 + 1/p^2 + 1/p^3) = A002117 * A330595 / 3 = 0.700772... . (End)
a(n) = Sum_{d divides n} J_3(d)/phi(d) = Sum_{1 <= i, j, k <= n} 1/phi(n/gcd(i,j,k,n)), where the Jordan totient function J_3(n) = A059376(n). - Peter Bala, Jan 23 2024
MAPLE
with(numtheory):
# define Jordan totient function J(r, n)
J(r, n) := add(d^r*mobius(n/d), d in divisors(n)):
seq(add(J(3, d)/phi(d), d in divisors(n)), n = 1..50); # Peter Bala, Jan 23 2024
MATHEMATICA
a[n_] := Sum[EulerPhi[i] EulerPhi[j] (EulerPhi[k] / EulerPhi[LCM[i, j, k]]), {i, Divisors[n]}, {j, Divisors[n]}, {k, Divisors[n]}];
Array[a, 48] (* Jean-François Alcover, Dec 13 2018, after Vladeta Jovovic *)
f[p_, e_] := 1 + (p^2 + p + 1)*((p^(2*e) - 1)/(p^2 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 15 2022 *)
PROG
(PARI) a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, eulerphi(i)*eulerphi(j)*eulerphi(k)/eulerphi(lcm(lcm(i, j), k))))); \\ Michel Marcus, Dec 14 2018
(PARI) a160889(n) = sumdiv(n, d, moebius(n/d)*d^3)/eulerphi(n);
a(n) = sumdiv(n, d, a160889(d)); \\ Seiichi Manyama, May 12 2021
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Oct 30 2001
EXTENSIONS
Formula and more terms from Vladeta Jovovic, Oct 30 2001
STATUS
approved