login
A064969
Number of cyclic subgroups of the group C_n X C_n X C_n (where C_n is the cyclic group of order n).
11
1, 8, 14, 36, 32, 112, 58, 148, 131, 256, 134, 504, 184, 464, 448, 596, 308, 1048, 382, 1152, 812, 1072, 554, 2072, 807, 1472, 1184, 2088, 872, 3584, 994, 2388, 1876, 2464, 1856, 4716, 1408, 3056, 2576, 4736, 1724, 6496, 1894, 4824, 4192, 4432, 2258, 8344
OFFSET
1,2
COMMENTS
Inverse Moebius transform of A160889. - Vladeta Jovovic, Nov 21 2009
LINKS
László Tóth, Menon's identity and arithmetical sums representing functions of several variables, Rend. Sem. Mat. Univ. Politec. Torino, 69 (2011), 97-110 and arXiv, arXiv:1103.5861 [math.NT], 2011.
László Tóth, On the number of cyclic subgroups of a finite abelian group, arXiv:1203.6201 [math.GR], 2012.
FORMULA
a(n) = Sum_{i|n, j|n, k|n} phi(i)*phi(j)*phi(k)/phi(lcm(i, j, k)), where phi is Euler totient function (cf. A000010).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + (p^2 + p + 1)*((p^(2*e) - 1)/(p^2 - 1)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)/3) * Product_{p prime} (1 + 1/p^2 + 1/p^3) = A002117 * A330595 / 3 = 0.700772... . (End)
a(n) = Sum_{d divides n} J_3(d)/phi(d) = Sum_{1 <= i, j, k <= n} 1/phi(n/gcd(i,j,k,n)), where the Jordan totient function J_3(n) = A059376(n). - Peter Bala, Jan 23 2024
MAPLE
with(numtheory):
# define Jordan totient function J(r, n)
J(r, n) := add(d^r*mobius(n/d), d in divisors(n)):
seq(add(J(3, d)/phi(d), d in divisors(n)), n = 1..50); # Peter Bala, Jan 23 2024
MATHEMATICA
a[n_] := Sum[EulerPhi[i] EulerPhi[j] (EulerPhi[k] / EulerPhi[LCM[i, j, k]]), {i, Divisors[n]}, {j, Divisors[n]}, {k, Divisors[n]}];
Array[a, 48] (* Jean-François Alcover, Dec 13 2018, after Vladeta Jovovic *)
f[p_, e_] := 1 + (p^2 + p + 1)*((p^(2*e) - 1)/(p^2 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 15 2022 *)
PROG
(PARI) a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, eulerphi(i)*eulerphi(j)*eulerphi(k)/eulerphi(lcm(lcm(i, j), k))))); \\ Michel Marcus, Dec 14 2018
(PARI) a160889(n) = sumdiv(n, d, moebius(n/d)*d^3)/eulerphi(n);
a(n) = sumdiv(n, d, a160889(d)); \\ Seiichi Manyama, May 12 2021
KEYWORD
nonn,mult,easy
AUTHOR
Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Oct 30 2001
EXTENSIONS
Formula and more terms from Vladeta Jovovic, Oct 30 2001
STATUS
approved