login
A064018
a(n) = A002088(10^n) = Sum_{k <= 10^n} phi(k), sum of the Euler totients phi = A000010.
6
1, 32, 3044, 304192, 30397486, 3039650754, 303963552392, 30396356427242, 3039635516365908, 303963551173008414, 30396355092886216366, 3039635509283386211140, 303963550927059804025910, 30396355092702898919527444, 3039635509270144893910357854, 303963550927013509478708835152
OFFSET
0,2
COMMENTS
Asymptotically, A002088(n) ~ 0.30396355...*n^2 = (3/Pi^2)*n^2, see A104141 and A002088. - Michael B. Porter, Mar 08 2013 [corrected by M. F. Hasler, Apr 18 2015]
LINKS
Hiroaki Yamanouchi, Table of n, a(n) for n = 0..18
Eric Weisstein's World of Mathematics, Totient Summatory Function.
MATHEMATICA
s = 0; k = 1; Do[ While[ k <= 10^n, s = s + EulerPhi[ k ]; k++ ]; Print[ s ], {n, 0, 8} ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 07 2001
EXTENSIONS
More terms from Robert G. Wilson v, Sep 07 2001
a(10)-a(11) from Donovan Johnson, Feb 06 2010
a(12) from Donovan Johnson, Feb 07 2012
a(13)-a(14) from Hiroaki Yamanouchi, Jul 06 2014
a(15) from Asif Ahmed, Apr 16 2015
Name edited by Michel Marcus and M. F. Hasler, Apr 16 and Apr 18 2015
STATUS
approved