login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063028 Reversion of x - x^2 + x^5. 2
0, 1, 1, 2, 5, 13, 35, 96, 264, 720, 1925, 4966, 12038, 25907, 41310, -5168, -468996, -2982240, -14350320, -61334790, -244951840, -934684465, -3447083370, -12365767620, -43304717625, -148314737961, -497033803314, -1628721662260, -5208556347700 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

For the reversion of x - a*x^2 - b*x^5 (a!=0, b!=0) we have a(n) = Sum_{j=0..(n-1)/3} a^(n-4*j-1)*b^j*binomial(n-3*j-1, j)*binomial(2*n-3*j-2, n-1)/n, n > 0. - Vladimir Kruchinin, May 28 2011

Obeys a 7-term hypergeometric recurrence with 4th-order polynomial coefficients. - R. J. Mathar, Nov 16 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..125

Index entries for reversions of series

Vladimir Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244

FORMULA

a(n) = Sum_{j=0..(n-1)/3} (-1)^j*binomial(n-3*j-1, j)*binomial(2*n-3*j-2, n-1)/n, n > 0, a(0)=0. - Vladimir Kruchinin, May 28 2011

MATHEMATICA

CoefficientList[InverseSeries[Series[y - y^2 + y^5, {y, 0, 30}], x], x]

PROG

(Maxima)

a(n):=sum((-1)^j*binomial(n-3*j-1, j)*binomial(2*n-3*j-2, n-1), j, 0, (n-1)/3)/n; /* Vladimir Kruchinin, May 28 2011 */

(PARI) x='x+O('x^66); /* that many terms */

Vec(serreverse(x-x^2+x^5)) /* show terms */ /* Joerg Arndt, May 28 2011 */

CROSSREFS

Sequence in context: A227045 A007075 A000107 * A085810 A235611 A005773

Adjacent sequences:  A063025 A063026 A063027 * A063029 A063030 A063031

KEYWORD

sign,easy

AUTHOR

Olivier Gérard, Jul 05 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 08:37 EDT 2018. Contains 316276 sequences. (Running on oeis4.)