login
Table T(n,k) by antidiagonals of n^(k-1) mod k [n,k > 0].
4

%I #8 Mar 30 2012 18:51:34

%S 0,1,0,1,0,0,1,1,1,0,1,0,0,0,0,1,1,3,1,1,0,1,2,1,0,1,0,0,1,1,3,1,1,0,

%T 1,0,1,0,1,4,0,0,1,0,0,1,4,3,1,5,1,3,1,1,0,1,2,0,0,1,0,1,0,0,0,0,1,1,

%U 3,7,5,1,1,1,1,1,1,0,1,8,1,4,7,0,0,2,1,0,1,0,0,1,1,3,1,5,0,7,1,3,0,3,0,1,0

%N Table T(n,k) by antidiagonals of n^(k-1) mod k [n,k > 0].

%H <a href="/index/Ps#pseudoprimes">Index entries for sequences related to pseudoprimes</a>

%H <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers.</a>

%e T(5,3)=5^(3-1) mod 3=25 mod 3=1. Rows start (0,1,1,1,1,...), (0,0,1,0,1,...), (0,1,0,3,1...), (0,0,1,0,1,...), (0,1,1,1,0,...), ...

%Y Cf. A002997, A060154. Rows include A057427, A062173, A062174, A062175, A062176. Columns include A000004, A000035, A011655, A010684 with interleaved 0's, A011558, A010875. Diagonals include all the rows again and A000004 and A009001 unsigned.

%K nonn,tabl

%O 1,18

%A _Henry Bottomley_, Jun 12 2001