login
Coefficient triangle of generalized Laguerre polynomials n!*L(n,5,x)(rising powers of x).
13

%I #32 Mar 22 2021 07:27:11

%S 1,6,-1,42,-14,1,336,-168,24,-1,3024,-2016,432,-36,1,30240,-25200,

%T 7200,-900,50,-1,332640,-332640,118800,-19800,1650,-66,1,3991680,

%U -4656960,1995840,-415800,46200,-2772,84,-1,51891840,-69189120

%N Coefficient triangle of generalized Laguerre polynomials n!*L(n,5,x)(rising powers of x).

%C The row polynomials s(n,x) := n!*L(n,5,x)= sum(a(n,m)*x^m,m=0..n) have e.g.f. exp(-z*x/(1-z))/(1-z)^6. They are Sheffer polynomials satisfying the binomial convolution identity s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), with polynomials sum(|A008297(n,m)|*(-x)^m, m=1..n), n >= 1 and p(0,x)=1 (for Sheffer polynomials see A048854 for S. Roman reference).

%C These polynomials appear in the radial part of the l=2 (d-wave) eigen functions for the discrete energy levels of the H-atom. See Messiah reference.

%C For m=0..5 the (unsigned) column sequences (without leading zeros) are: A001725(n+5), A062148-A062152. Row sums (signed) give A062191; row sums (unsigned) give A062192.

%C The unsigned version of this triangle is the triangle of unsigned 3-Lah numbers A143498. - _Peter Bala_, Aug 25 2008

%D A. Messiah, Quantum mechanics, vol. 1, p. 419, eq.(XI.18a), North Holland, 1969.

%H Indranil Ghosh, <a href="/A062138/b062138.txt">Rows 0..125, flattened</a>

%H <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a>

%F T(n, m) = ((-1)^m)*n!*binomial(n+5, n-m)/m!.

%F E.g.f. for m-th column: ((-x/(1-x))^m)/(m!*(1-x)^6), m >= 0.

%e Triangle begins:

%e {1};

%e {6, -1};

%e {42, -14, 1};

%e {336, -168, 24, -1};

%e ...

%e 2!*L(2, 5, x) = 42-14*x+x^2.

%t Flatten[Table[((-1)^m)*n!*Binomial[n+5,n-m]/m!,{n,0,8},{m,0,n}]] (* _Indranil Ghosh_, Feb 24 2017 *)

%o (PARI) tabl(nn) = {for (n=0, nn, for (m=0, n, print1(((-1)^m)*n!*binomial(n+5, n-m)/m!, ", "); ); print(); ); } \\ _Indranil Ghosh_, Feb 24 2017

%o (PARI) row(n) = Vecrev(n!*pollaguerre(n, 5)); \\ _Michel Marcus_, Feb 06 2021

%o (Python)

%o import math

%o f=math.factorial

%o def C(n, r):return f(n)//f(r)//f(n-r)

%o i=-1

%o for n in range(26):

%o for m in range(n+1):

%o i += 1

%o print(str(i)+" "+str(((-1)**m)*f(n)*C(n+5, n-m)//f(m))) # _Indranil Ghosh_, Feb 24 2017

%Y Cf. A021009, A062137, A062139, A062140, A066667.

%Y For m=0..5 the (unsigned) column sequences (without leading zeros) are: A001725(n+5), A062148, A062149, A062150, A062151, A062152.

%Y Row sums (signed) give A062191, row sums (unsigned) give A062192.

%Y Cf. A143498.

%K sign,easy,tabl

%O 0,2

%A _Wolfdieter Lang_, Jun 19 2001