login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062066 a(1) = 2; a(n) is the smallest prime > a(n-1) such that a(n) + a(n-1) is a cube. 3
2, 727, 2017, 11807, 15193, 39679, 70913, 124199, 314777, 1090151, 1895833, 3017167, 4982833, 8841167, 10841833, 14570351, 17587081, 24557111, 26095889, 27061487, 32257513, 45051263, 46073737, 61776439, 72441289, 74756663, 82707337, 114430031, 157667761, 170841239 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Zak Seidov, Table of n, a(n) for n = 1..10000 (first 45 terms from Harry J. Smith)

EXAMPLE

The next term after 727 is 2017 as 727 + 2017 = 2744 = 14^3.

MATHEMATICA

a=2; s={a}; c=1; k=1; Do[Label[ne]; If[PrimeQ[b=k^3-a]&&b>a, a=b; c++; AppendTo[s, a]; If[c==10000, Break[]]]; k++; Goto[ne], {1}]; s (*Zak Seidov, Sep 28 2011*)

sp[n_]:=Module[{c=Floor[Surd[NextPrime[2n], 3]]+1}, While[!PrimeQ[ c^3- n], c++]; c^3-n]; NestList[sp, 2, 30] (* Harvey P. Dale, Dec 19 2015 *)

PROG

(PARI) iscube(x)= { f=factor(x)~; for(i=1, length(f), if (t=f[2, i]%3, return(0))); return(1); } { a=2; for (n=1, 45, a1=a; if (n>1, until (iscube(a + a1), a=nextprime(a + 1))); write("b062066.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 31 2009

CROSSREFS

Cf. A062064.

Sequence in context: A156008 A103169 A082438 * A174368 A082621 A053600

Adjacent sequences:  A062063 A062064 A062065 * A062067 A062068 A062069

KEYWORD

nonn

AUTHOR

Amarnath Murthy, Jun 12 2001

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Jun 21 2001

Further terms from Philip Sung (phil(AT)main.nu), Sep 11 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 17:50 EDT 2019. Contains 324330 sequences. (Running on oeis4.)