The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061896 Triangle of coefficients of Lucas polynomials. 5
 2, 1, 0, 1, 2, 0, 1, 3, 0, 0, 1, 4, 2, 0, 0, 1, 5, 5, 0, 0, 0, 1, 6, 9, 2, 0, 0, 0, 1, 7, 14, 7, 0, 0, 0, 0, 1, 8, 20, 16, 2, 0, 0, 0, 0, 1, 9, 27, 30, 9, 0, 0, 0, 0, 0, 1, 10, 35, 50, 25, 2, 0, 0, 0, 0, 0, 1, 11, 44, 77, 55, 11, 0, 0, 0, 0, 0, 0, 1, 12, 54, 112, 105, 36, 2, 0, 0, 0, 0, 0, 0, 1, 13 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened FORMULA a(n, k) = C(n-k, k)*n/(n-k). a(n, k) = C(n-k, k) + C(n-k-1, k-1). a(n, k) = a(n-1, k) + a(n-2, k-1) with a(n, 0)=1 if n>0 and a(0, 0)=2. EXAMPLE Triangle begins: 2, 1, 0. 1, 2, 0. 1, 3, 0, 0. 1, 4, 2, 0, 0. 1, 5, 5, 0, 0, 0. 1, 6, 9, 2, 0, 0, 0. MATHEMATICA a[0, 0] := 2; a[n_, 0] := 1; a[n_, n_] := 0; a[n_, k_] := Binomial[n - k, k]*n/(n - k); Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 15 2017 *) CROSSREFS Alternative version of A034807. With alternating signs, these are the coefficients of the recurrences in A061897. Sequence in context: A083056 A321100 A244422 * A069850 A141581 A179286 Adjacent sequences:  A061893 A061894 A061895 * A061897 A061898 A061899 KEYWORD nonn,tabl AUTHOR Henry Bottomley, May 14 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 22:45 EDT 2021. Contains 343098 sequences. (Running on oeis4.)