login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061896 Triangle of coefficients of Lucas polynomials. 5
2, 1, 0, 1, 2, 0, 1, 3, 0, 0, 1, 4, 2, 0, 0, 1, 5, 5, 0, 0, 0, 1, 6, 9, 2, 0, 0, 0, 1, 7, 14, 7, 0, 0, 0, 0, 1, 8, 20, 16, 2, 0, 0, 0, 0, 1, 9, 27, 30, 9, 0, 0, 0, 0, 0, 1, 10, 35, 50, 25, 2, 0, 0, 0, 0, 0, 1, 11, 44, 77, 55, 11, 0, 0, 0, 0, 0, 0, 1, 12, 54, 112, 105, 36, 2, 0, 0, 0, 0, 0, 0, 1, 13 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened

FORMULA

a(n, k) = C(n-k, k)*n/(n-k).

a(n, k) = C(n-k, k) + C(n-k-1, k-1).

a(n, k) = a(n-1, k) + a(n-2, k-1) with a(n, 0)=1 if n>0 and a(0, 0)=2.

EXAMPLE

Triangle begins:

2,

1, 0.

1, 2, 0.

1, 3, 0, 0.

1, 4, 2, 0, 0.

1, 5, 5, 0, 0, 0.

1, 6, 9, 2, 0, 0, 0.

MATHEMATICA

a[0, 0] := 2; a[n_, 0] := 1; a[n_, n_] := 0; a[n_, k_] := Binomial[n - k, k]*n/(n - k); Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 15 2017 *)

CROSSREFS

Alternative version of A034807. With alternating signs, these are the coefficients of the recurrences in A061897.

Sequence in context: A069842 A083056 A244422 * A069850 A141581 A179286

Adjacent sequences:  A061893 A061894 A061895 * A061897 A061898 A061899

KEYWORD

nonn,tabl

AUTHOR

Henry Bottomley, May 14 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 25 03:33 EST 2018. Contains 299630 sequences. (Running on oeis4.)