%I #73 Sep 20 2022 15:50:33
%S 2,3,4,6,9,13,19,28,42,63,94,141,211,316,474,711,1066,1599,2398,3597,
%T 5395,8092,12138,18207,27310,40965,61447,92170,138255,207382,311073,
%U 466609,699913,1049869,1574803,2362204,3543306,5314959,7972438
%N a(n) = floor(a(n-1)*3/2) with a(1) = 2.
%C Can be stated as the number of animals starting from a single pair if any pair of animals can produce a single offspring (as in the game Minecraft, if the player allows offspring to fully grow before breeding again). - _Denis Moskowitz_, Dec 05 2012
%C Maximum number of partial products that can be added in a Wallace tree multiplier with n-1 full adder stages. - _Chinmaya Dash_, Aug 19 2020
%H Iain Fox, <a href="/A061418/b061418.txt">Table of n, a(n) for n = 1..1000</a> (first 500 terms from Harry J. Smith)
%H Don Knuth, <a href="http://cs.stanford.edu/~knuth/papers/ambidextrous.pdf">Ambidextrous Numbers</a>, Preprint, September 2022.
%H M. van de Vel, <a href="http://www.emis.de/journals/JACO/Volume9_2/g618g3480371x5m8.html">Determination of msd(L^n)</a>, J. Algebraic Combin. 9(2) (1999), 161-171. See Table 5. - _N. J. A. Sloane_, Mar 26 2012
%H Mark van Wijk, <a href="http://essay.utwente.nl/91694/1/van%20Wijk_BA_EEMCS.pdf">The Quest for the Best Thread-Safe Java List</a>, Univ. of Twente (Netherlands 2022).
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Wallace_tree">Wallace tree</a>.
%F a(n) = A061419(n) + 1 = ceiling(K*(3/2)^n) where K = 1.08151366859...
%F The constant K is (2/3)*K(3) (see A083286). - _Ralf Stephan_, May 29 2003
%e a(6) = floor(9*3/2) = 13.
%o (Magma) [ n eq 1 select 2 else Floor(Self(n-1)*(3/2)): n in [1..39] ]; // _Klaus Brockhaus_, Nov 14 2008
%o (PARI) { a=4/3; for (n=1, 500, a=a*3\2; write("b061418.txt", n, " ", a) ) } \\ _Harry J. Smith_, Jul 22 2009
%o (PARI) first(n) = my(v=vector(n)); v[1]=2; for(i=2, n, v[i]=v[i-1]*3\2); v \\ _Iain Fox_, Jul 15 2022
%o (Python)
%o from itertools import islice
%o def A061418_gen(): # generator of terms
%o a = 2
%o while True:
%o yield a
%o a += a>>1
%o A061418_list = list(islice(A061418_gen(),70)) # _Chai Wah Wu_, Sep 20 2022
%Y Cf. A002379, A003312, A034082, A061419, A083286.
%Y First differences are in A073941.
%K nonn,easy
%O 1,1
%A _Henry Bottomley_, May 02 2001