This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061253 Let G_n be the elementary Abelian group G_n = (C_3)^n; a(n) is the number of times the number 1 appears in the character table of G_n. 1
 5, 33, 261, 2241, 19845, 177633, 1595781, 14353281, 129153285, 1162300833, 10460471301, 94143533121, 847289672325, 7625600673633, 68630386930821, 617673424981761, 5559060652648965, 50031545357280033, 450283906665838341 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Harry J. Smith, Table of n, a(n) for n=1,...,200 FORMULA a(n) = 3^(n-1) * (3^n + 2) EXAMPLE a(1) = 5 because the character table of C_3 is / 1, 1, 1 / 1, z, z^2 / 1, z^2, z / where z = e^(2 * pi * i /3) is a primitive cube root of unity. PROG (PARI) { for (n=1, 200, write("b061253.txt", n, " ", 3^(n-1) * (3^n + 2)) ) } [From Harry J. Smith, Jul 20 2009] CROSSREFS Cf. A006516. Sequence in context: A056159 A171804 A199552 * A111530 A087633 A135075 Adjacent sequences:  A061250 A061251 A061252 * A061254 A061255 A061256 KEYWORD nonn AUTHOR Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 02 2001 EXTENSIONS More terms from Harry J. Smith, Jul 20 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .