OFFSET
1,2
COMMENTS
If 10^d < k < 10^d + 10^floor((2*d-3)/6), then k^2 has a majority of digits 0. In particular, the sequence is infinite. Robert Israel, Dec 20 2023
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
2038^2 = 4153444 and more than half the digits are 4's.
MAPLE
filter:= proc(n) local s, t, d;
if n mod 10 = 0 then return false fi;
s:= sort(convert(n^2, base, 10));
d:= nops(s);
t:= s[ceil(d/2)];
numboccur(t, s) > d/2;
end proc:
select(filter, [$1..2000]); # Robert Israel, Dec 20 2023
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Erich Friedman, Apr 29 2001
STATUS
approved