login
Denominators of special continued fraction for 2*zeta(3).
4

%I #7 Jan 02 2023 00:06:50

%S 2,4,3,2,4,6,5,4,6,8,7,6,8,10,9,8,10,12,11,10,12,14,13,12,14,16,15,14,

%T 16,18,17,16,18,20,19,18,20,22,21,20,22,24,23,22,24,26,25,24,26,28,27,

%U 26,28,30,29,28,30,32,31,30,32,34,33,32,34,36,35,34,36

%N Denominators of special continued fraction for 2*zeta(3).

%D Y. V. Nesterenko, A few remarks on zeta(3), Mathematical Notes, 59 (No. 6, 1996), 625-636.

%H Y. V. Nesterenko, <a href="http://www.ufr-mi.u-bordeaux.fr/~brisebar/GT/9899/Nest/nest29avril.html">Zeta(3) and recurrence relations.</a>

%H Yu. V. Nesterenko, <a href="http://dx.doi.org/10.1007/BF02307212">A few remarks on zeta(3)</a>, Math. Notes 59 (1996) 625-636.

%F a(4*k+1) = 2*k+2, a(4*k+2) = 2*k+4, a(4*k+3) = 2*k+3, a(4*k+4) = 2*k+2 [from Nesterenko]. - _Sean A. Irvine_, Jan 01 2023

%Y Cf. A060804-A060808.

%K nonn,cofr

%O 1,1

%A _N. J. A. Sloane_, Apr 29 2001

%E More terms from _Sean A. Irvine_, Jan 01 2023