login
Triangle T(n,k) = number of degree-n permutations with k even cycles, k=0..n.
4

%I #23 Aug 17 2023 18:47:49

%S 1,1,0,1,1,0,3,3,0,0,9,12,3,0,0,45,60,15,0,0,0,225,345,135,15,0,0,0,

%T 1575,2415,945,105,0,0,0,0,11025,18480,9030,1680,105,0,0,0,0,99225,

%U 166320,81270,15120,945,0,0,0,0,0,893025,1596105,897750,217350,23625,945,0,0,0,0,0

%N Triangle T(n,k) = number of degree-n permutations with k even cycles, k=0..n.

%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 189, Exercise 3.3.13.

%H Alois P. Heinz, <a href="/A060523/b060523.txt">Rows n = 0..140, flattened</a>

%F E.g.f.: (1+x)^((1-y)/2)/(1-x)^((1+y)/2).

%F Sum_{k=0..n} k * T(n,k) = A092691(n). - _Alois P. Heinz_, Aug 17 2023

%e Triangle T(n,k) begins:

%e 1;

%e 1, 0;

%e 1, 1, 0;

%e 3, 3, 0, 0;

%e 9, 12, 3, 0, 0;

%e 45, 60, 15, 0, 0, 0;

%e 225, 345, 135, 15, 0, 0, 0;

%e 1575, 2415, 945, 105, 0, 0, 0, 0;

%e 11025, 18480, 9030, 1680, 105, 0, 0, 0, 0;

%e 99225, 166320, 81270, 15120, 945, 0, 0, 0, 0, 0;

%e 893025, 1596105, 897750, 217350, 23625, 945, 0, 0, 0, 0, 0;

%e ...

%p with(combinat):

%p b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,

%p add(multinomial(n, n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1)*

%p `if`(irem(i, 2)=0, x^j, 1), j=0..n/i))))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):

%p seq(T(n), n=0..12); # _Alois P. Heinz_, Mar 09 2015

%t nn = 6; Range[0, nn]! CoefficientList[

%t Series[(1 - x^2)^(-y/2) ((1 + x)/(1 - x))^(1/2), {x, 0, nn}], {x, y}] // Grid (* _Geoffrey Critzer_, Aug 27 2012 *)

%Y Columns k=0-1 give: A000246, A096471.

%Y Row sums give A000142.

%Y Cf. A060524, A092691.

%K easy,nonn,tabl

%O 0,7

%A _Vladeta Jovovic_, Apr 01 2001