login
A060328
Primes which are the sum of three consecutive composite numbers.
5
23, 31, 41, 59, 67, 71, 109, 113, 131, 139, 157, 199, 211, 239, 251, 269, 293, 311, 337, 379, 383, 409, 419, 487, 491, 499, 503, 521, 571, 599, 631, 701, 751, 769, 773, 787, 829, 877, 881, 919, 941, 953, 991, 1009, 1013, 1039, 1049, 1061, 1103, 1117, 1151
OFFSET
1,1
COMMENTS
"Consecutive" necessarily means consecutive in the list of composite numbers as opposed to consecutive in the integers, as the sum of any 3 consecutive integers is a multiple of 3. - Peter Munn, Aug 20 2023
EXAMPLE
a(3) = 41 is equal to 12+14+15.
MATHEMATICA
composite[ n_Integer ] := (k = n + PrimePi[ n ] + 1; While[ k - PrimePi[ k ] - 1 != n, k++ ]; k); b = {}; Do[ p = composite[ n ] + composite[ n + 1 ] + composite[ n + 2 ]; If[ PrimeQ[ p ], b = Append[ b, p ] ], {n, 1, 1000} ]; b
CROSSREFS
Primes that are the sum of other numbers of consecutive composite numbers: A060254 (2), A060329 (4), A060330 (5), A060331 (6), A060332 (7), A060333 (8). See also A037174.
Cf. A034962.
Complement within A166039\{5, 11} of A151741.
Sequence in context: A169640 A026051 A141818 * A034962 A133659 A309354
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Mar 30 2001
STATUS
approved