login
Denominators of nonzero numbers appearing in the Euler-Maclaurin summation formula. (See A060054 for the definition of these numbers.)
6

%I #43 Aug 02 2023 10:44:04

%S 2,12,720,30240,1209600,47900160,1307674368000,74724249600,

%T 10670622842880000,5109094217170944000,802857662698291200000,

%U 14101100039391805440000,1693824136731743669452800000

%N Denominators of nonzero numbers appearing in the Euler-Maclaurin summation formula. (See A060054 for the definition of these numbers.)

%C Denominators of nonzero coefficients in the series expansion around zero of cot(x/2)/2, disregarding the first term. - _Fredrik Johansson_, Aug 20 2006

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 16 (3.6.28), p. 806 (23.1.30), p. 886 (25.4.7).

%H Vincenzo Librandi, <a href="/A060055/b060055.txt">Table of n, a(n) for n = 1..200</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 16 (3.6.28), p. 806 (23.1.30), p. 886 (25.4.7).

%H Zhanna Kuznetsova, and Francesco Toppan, <a href="https://arxiv.org/abs/2103.04385">Classification of minimal Z_2 X Z_2-graded Lie (super)algebras and some applications</a>, arXiv:2103.04385 [math-ph], 2021.

%t Join[{2}, f[n_]:=Denominator[-(-1)^n BernoulliB[2 n]/(2 n)!]; Table[f[n], {n, 30}]] (* _Robert G. Wilson v_, Sep 02 2004 *) (* adapted by _Vincenzo Librandi_, May 04 2017 *)

%t Join[{2}, Denominator[Table[SeriesCoefficient[x^2/(1 - E^x), {x, 0, n}], {n, 3, 25, 2}]]] (* _Terry D. Grant_, Jun 01 2017 *)

%o (Magma) [2] cat [Denominator(-(-1)^n*Bernoulli(2*n)/Factorial(2*n)): n in [1..15]]; // _Vincenzo Librandi_, Jun 04 2017

%Y Numerators give A060054.

%K nonn,frac,easy

%O 1,1

%A _Wolfdieter Lang_, Feb 16 2001