login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059888
a(n) = |{m : multiplicative order of 6 mod m=n}|.
14
2, 2, 2, 4, 4, 10, 2, 8, 12, 40, 6, 108, 6, 42, 40, 48, 30, 100, 6, 332, 10, 22, 30, 376, 26, 118, 48, 332, 2, 1436, 6, 448, 54, 222, 88, 7952, 62, 54, 54, 2680, 6, 698, 30, 476, 1476, 222, 14, 7632, 28, 438, 478, 1916, 14, 1872, 84, 11896, 118, 58, 14, 784452
OFFSET
1,1
COMMENTS
The multiplicative order of a mod m, GCD(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m).
Also, number of primitive factors of 6^n - 1. - Max Alekseyev, May 03 2022
LINKS
FORMULA
a(n) = Sum_{ d divides n } mu(n/d)*tau(6^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).
MAPLE
with(numtheory):
a:= n-> add(mobius(n/d)*tau(6^d-1), d=divisors(n)):
seq(a(n), n=1..50); # Alois P. Heinz, Oct 12 2012
CROSSREFS
Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), A059886 (b=4), A059887 (b=5), this sequence (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).
Column k=6 of A212957.
Sequence in context: A178799 A360360 A089819 * A299204 A230141 A151680
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Feb 06 2001
STATUS
approved