login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059480 a(0) = a(1) = 1; a(n) = a(n-1) + (n+1)*a(n-2). 4
1, 1, 4, 8, 28, 76, 272, 880, 3328, 12128, 48736, 194272, 827840, 3547648, 15965248, 72727616, 344136832, 1653233920, 8191833728, 41256512128, 213285020416, 1120928287232, 6026483756800, 32928762650368, 183590856570368 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of permutations of order (n+4) that simultaneously avoid the patterns 12-3 and 21-3, start with 1 and end with pattern 12.

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..200

S. Kitaev and T. Mansour, On multi-avoidance of generalized patterns.

FORMULA

a(n) = a(n - 1) + (n + 1)*a(n - 2); a(0) = a(1) = 1;

E.g.f.: (-2*(1+x)+ e^((x*(2+x))/2)*(2+x*(2+x))*(2 +sqrt(2*e*Pi) * erf(1/sqrt(2))) - e^((1+x)^2/2)*sqrt(2*Pi)*(2+x*(2+x)) * erf((1+x)/sqrt(2)))/2.

E.g.f.: (with offset 2) exp(x+x^2/2) * (1-integral(exp(-t-t^2/2) dt, t=0..x)) - 1 .

a(n) ~ (1/sqrt(2) + sqrt(Pi)/2*exp(1/2) * (erf(1/sqrt(2)) - 1)) * n^(n/2+1)*exp(sqrt(n) - n/2 - 1/4) * (1+31/(24*sqrt(n))). - Vaclav Kotesovec, Dec 27 2012

a(n) = B(0,n)+B(1,n)+B(2,n)/2+Q(1,n)+Q(2,n)+Q(3,n)/2, n>=4, where B and Q are defined in the Mathematica section below. - Benedict W. J. Irwin, Apr 11 2017

EXAMPLE

For n=3, the a(3) = 8 permutations of n+4=7 symbols that satisfy the constraints are: {1,7,2,6,5,3,4},{1,7,3,6,5,2,4},{1,7,4,6,5,2,3},{1,7,5,6,4,2,3},{1,7,6,2,5,3,4},{1,7,6,3,5,2,4},{1,7,6,4,5,2,3} and {1,7,6,5,4,2,3}. - Olivier Gérard, Sep 26 2012

MATHEMATICA

FullSimplify[CoefficientList[Series[1/2*((Sqrt[2*E*Pi]*Erf[1/Sqrt[2]]+2) * E^(1/2*x*(x+2))*(x*(x+2)+2)-Sqrt[2*Pi]*E^(1/2*(x+1)^2)*(x*(x+2)+2) * Erf[(x+1)/Sqrt[2]]-2*(x+1)), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Dec 27 2012 *)

RecurrenceTable[{a[0] == 1, a[1] == 1, a[n] == a[n - 1] + (n + 1) a[n - 2]}, a[n], {n, 0, 24}] (* Ray Chandler, Jul 30 2015 *)

B[j_, n_] := Sum[2 n!/((n - j - 2 k)! 2^k k!), {k, 0, n/2}]

H[t_, u_, v_, n_] := HypergeometricPFQRegularized[{1, t+k-n}, {1+(u+k-n)/2, (v+k-n)/2}, -1/2]

Q[t_, n_] := Sqrt[Pi]n!Sum[((-1)^k 2^(k/2)(H[t, t, t+1, n]+(-t-k+n)H[t+1, t, t+3, n])HypergeometricU[1-k/2, 3/2, 1/2]Binomial[-t+n, k])/(n-t+1)!, {k, 1, n-t}]

Flatten[{1, 1, 4, 8, FullSimplify@Table[B[0, n] + B[1, n] + B[2, n]/2 + Q[1, n] + Q[2, n] + Q[3, n]/2, {n, 4, 20}]}] (* Benedict W. J. Irwin, Apr 11 2017 *)

nxt[{n_, a_, b_}]:={n+1, b, b+a(n+2)}; NestList[nxt, {1, 1, 1}, 30][[All, 2]] (* Harvey P. Dale, Dec 31 2017 *)

PROG

(PARI) { a=b=c=1; for (n = 0, 200, if (n>1, a=b + (n + 1)*c; c=b; b=a); write("b059480.txt", n, " ", a); ) }  \\ Harry J. Smith, Jun 27 2009

CROSSREFS

Sequence in context: A034515 A345747 A189546 * A105723 A280118 A143555

Adjacent sequences:  A059477 A059478 A059479 * A059481 A059482 A059483

KEYWORD

nonn

AUTHOR

Wouter Meeussen, Feb 15 2001

EXTENSIONS

Name changed and offset of interpretation corrected by Olivier Gérard, Sep 26 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 13:08 EST 2021. Contains 349581 sequences. (Running on oeis4.)