The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059480 a(0) = a(1) = 1; a(n) = a(n-1) + (n+1)*a(n-2). 4
 1, 1, 4, 8, 28, 76, 272, 880, 3328, 12128, 48736, 194272, 827840, 3547648, 15965248, 72727616, 344136832, 1653233920, 8191833728, 41256512128, 213285020416, 1120928287232, 6026483756800, 32928762650368, 183590856570368 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Number of permutations of order (n+4) that simultaneously avoid the patterns 12-3 and 21-3, start with 1 and end with pattern 12. LINKS Harry J. Smith, Table of n, a(n) for n = 0..200 S. Kitaev and T. Mansour, On multi-avoidance of generalized patterns. FORMULA a(n) = a(n - 1) + (n + 1)*a(n - 2); a(0) = a(1) = 1; E.g.f.: (-2*(1+x)+ e^((x*(2+x))/2)*(2+x*(2+x))*(2 +sqrt(2*e*Pi) * erf(1/sqrt(2))) - e^((1+x)^2/2)*sqrt(2*Pi)*(2+x*(2+x)) * erf((1+x)/sqrt(2)))/2. E.g.f.: (with offset 2) exp(x+x^2/2) * (1-integral(exp(-t-t^2/2) dt, t=0..x)) - 1 . a(n) ~ (1/sqrt(2) + sqrt(Pi)/2*exp(1/2) * (erf(1/sqrt(2)) - 1)) * n^(n/2+1)*exp(sqrt(n) - n/2 - 1/4) * (1+31/(24*sqrt(n))). - Vaclav Kotesovec, Dec 27 2012 a(n) = B(0,n)+B(1,n)+B(2,n)/2+Q(1,n)+Q(2,n)+Q(3,n)/2, n>=4, where B and Q are defined in the Mathematica section below. - Benedict W. J. Irwin, Apr 11 2017 EXAMPLE For n=3, the a(3) = 8 permutations of n+4=7 symbols that satisfy the constraints are: {1,7,2,6,5,3,4},{1,7,3,6,5,2,4},{1,7,4,6,5,2,3},{1,7,5,6,4,2,3},{1,7,6,2,5,3,4},{1,7,6,3,5,2,4},{1,7,6,4,5,2,3} and {1,7,6,5,4,2,3}. - Olivier Gérard, Sep 26 2012 MATHEMATICA FullSimplify[CoefficientList[Series[1/2*((Sqrt[2*E*Pi]*Erf[1/Sqrt[2]]+2) * E^(1/2*x*(x+2))*(x*(x+2)+2)-Sqrt[2*Pi]*E^(1/2*(x+1)^2)*(x*(x+2)+2) * Erf[(x+1)/Sqrt[2]]-2*(x+1)), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Dec 27 2012 *) RecurrenceTable[{a[0] == 1, a[1] == 1, a[n] == a[n - 1] + (n + 1) a[n - 2]}, a[n], {n, 0, 24}] (* Ray Chandler, Jul 30 2015 *) B[j_, n_] := Sum[2 n!/((n - j - 2 k)! 2^k k!), {k, 0, n/2}] H[t_, u_, v_, n_] := HypergeometricPFQRegularized[{1, t+k-n}, {1+(u+k-n)/2, (v+k-n)/2}, -1/2] Q[t_, n_] := Sqrt[Pi]n!Sum[((-1)^k 2^(k/2)(H[t, t, t+1, n]+(-t-k+n)H[t+1, t, t+3, n])HypergeometricU[1-k/2, 3/2, 1/2]Binomial[-t+n, k])/(n-t+1)!, {k, 1, n-t}] Flatten[{1, 1, 4, 8, FullSimplify@Table[B[0, n] + B[1, n] + B[2, n]/2 + Q[1, n] + Q[2, n] + Q[3, n]/2, {n, 4, 20}]}] (* Benedict W. J. Irwin, Apr 11 2017 *) nxt[{n_, a_, b_}]:={n+1, b, b+a(n+2)}; NestList[nxt, {1, 1, 1}, 30][[All, 2]] (* Harvey P. Dale, Dec 31 2017 *) PROG (PARI) { a=b=c=1; for (n = 0, 200, if (n>1, a=b + (n + 1)*c; c=b; b=a); write("b059480.txt", n, " ", a); ) }  \\ Harry J. Smith, Jun 27 2009 CROSSREFS Sequence in context: A034515 A345747 A189546 * A105723 A280118 A143555 Adjacent sequences:  A059477 A059478 A059479 * A059481 A059482 A059483 KEYWORD nonn AUTHOR Wouter Meeussen, Feb 15 2001 EXTENSIONS Name changed and offset of interpretation corrected by Olivier Gérard, Sep 26 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 13:08 EST 2021. Contains 349581 sequences. (Running on oeis4.)