login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059459 a(1) = 2; a(n+1) is obtained by writing a(n) in binary and trying to complement just one bit, starting with the least significant bit, until a new prime is reached. 6
2, 3, 7, 5, 13, 29, 31, 23, 19, 17, 8209, 8273, 10321, 2129, 2131, 83, 67, 71, 79, 1103, 1039, 1031, 1063, 1061, 1069, 263213, 263209, 263201, 265249, 265313, 264289, 280673, 280681, 280697, 280699, 280703, 280639, 280607, 280603, 280859, 280843, 281867, 265483, 265547, 265579, 265571, 266083, 266081, 266089, 266093, 266029 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

This is the lexicographically least (in positions of the flipped bits) such sequence.

It is not known if the sequence is infinite.

"The prime maze - consider the prime numbers in base 2, starting with the smallest prime (10)2. One can move to another prime number by either changing only one digit of the number, or adding a 1 to the front of the number. Can we reach 11 = (1011)2.? 3331? The Mersennes?" (See 'Prime Links + +'.) If we start at 11 and exclude terms 2 and 3 we get terms 11, 43, 41, and so on. This is the opposite parity sequence.

a(130), if it exists, is greater than 2^130000. - Charles R Greathouse IV, Jan 02 2014

a(130) is equal to a(129) + 2^400092. - Giovanni Resta, Jul 19 2017

LINKS

T. D. Noe and Charles R Greathouse IV, Table of n, a(n) for n = 1..129 (first 104 terms from Noe)

Chris K. Caldwell, Prime Links + +

W. Paulsen, The Prime Number Maze, Web Pages.

W. Paulsen, The Prime Number Maze, Fib. Quart., 40 (2002), 272-279.

Carlos Rivera, Problem 25.- William Paulsen's Prime Numbers Maze

MAPLE

A059459search := proc(a, upto_bit, upto_length) local i, n, t; if(nops(a) >= upto_length) then RETURN(a); fi; t := a[nops(a)]; for i from 0 to upto_bit do n := XORnos(t, (2^i)); if(isprime(n) and (not member(n, a))) then print([op(a), n]); RETURN(A059459search([op(a), n], upto_bit, upto_length)); fi; od; RETURN([op(a), `and no more`]); end;

E.g., call as: A059459search([2], 128, 200);

MATHEMATICA

maxBits = 2^11; ClearAll[a]; a[1] = 2; a[n_] := a[n] = If[ PrimeQ[ a[n-1] ], bits = PadLeft[ IntegerDigits[ a[n-1], 2], maxBits]; For[i = 1, i <= maxBits, i++, bits2 = bits; bits2[[-i]] = 1 - bits[[-i]]; If[ i == maxBits, Print[ "maxBits reached" ]; Break[], If[ PrimeQ[an = FromDigits[ bits2, 2]] && FreeQ[ Table[ a[k], {k, 1, n-1}], an], Return[an] ] ] ], 0]; Table[ a[n], {n, 129}] (* Jean-Fran├žois Alcover, Jan 17 2012 *)

f[lst_List] := Block[{db2 = IntegerDigits[lst[[-1]], 2]}, exp = Length@ db2; While[pp = db2; pp[[exp]] = If[OddQ@db2[[exp]], 0, 1]; pp = FromDigits[pp, 2]; !PrimeQ[pp] || MemberQ[lst, pp], exp--; If[exp == 0, exp++; PrependTo[db2, 0]]]; Append[lst, pp]]; Nest[f, {2}, 128] (* Robert G. Wilson v, Jul 17 2017 *)

PROG

(PARI) step(n)=my(k, t); while(vecsearch(v, t=bitxor(n, 1<<k)) || !ispseudoprime(t=bitxor(n, 1<<k)), k++); v=Set(concat(v, t)); t

u=v=[2]; u=concat(u, step(2)); for(i=3, 129, u=concat(u, step(u[#u])); print(#u" "u[#u])) \\ Charles R Greathouse IV, Jan 02 2014

CROSSREFS

Cf. A059458 (for this sequence written in binary), A059471. A strictly ascending analog: A059661, positions of the flipped bits: A059663.

Sequence in context: A064011 A050367 A192175 * A124440 A067363 A083188

Adjacent sequences:  A059456 A059457 A059458 * A059460 A059461 A059462

KEYWORD

nonn,base,nice

AUTHOR

Gregory Allen, Feb 02 2001

EXTENSIONS

More terms and Maple program from Antti Karttunen, Feb 03 2001, who remarks that he was able to extend the sequence to the 104th term 151115727453207491916143 using the bit-flip-limit 128.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 23 04:06 EDT 2017. Contains 290958 sequences.