login
Triangle giving denominators of coefficients of Euler polynomials, highest powers first.
2

%I #13 May 08 2018 15:11:55

%S 1,1,2,1,1,1,1,2,1,4,1,1,1,1,1,1,2,1,2,1,2,1,1,1,1,1,1,1,1,2,1,4,1,2,

%T 1,8,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,

%U 1,4,1,1,1,4,1,2,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2

%N Triangle giving denominators of coefficients of Euler polynomials, highest powers first.

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 48, [14b].

%H G. C. Greubel, <a href="/A059342/b059342.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%e 1; x-1/2; x^2-x; x^3-3*x^2/2+1/4; ...

%p for n from 0 to 30 do for k from n to 0 by -1 do printf(`%d,`,denom(coeff(euler(n,x), x, k))) od:od:

%t Denominator[Table[Reverse[CoefficientList[Series[EulerE[n, x], {x, 0, 20}], x]], {n, 0, 10}]] (* _G. C. Greubel_, Jan 07 2017 *)

%Y Cf. A059341. See also A004172 A004173 A004174 A004175 A011934 A020523 A020524 A020525 A020526 A020547 A020548 A058940.

%K nonn,tabf,frac,easy

%O 0,3

%A _N. J. A. Sloane_, Jan 27 2001

%E More terms from _James A. Sellers_, Jan 29 2001