login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059165
a(n) = (n+1)*2^(n+4).
2
0, 16, 64, 192, 512, 1280, 3072, 7168, 16384, 36864, 81920, 180224, 393216, 851968, 1835008, 3932160, 8388608, 17825792, 37748736, 79691776, 167772160, 352321536, 738197504, 1543503872, 3221225472, 6710886400, 13958643712
OFFSET
-1,2
COMMENTS
A hierarchical sequence (S(W'3{2,2}*cc) - see A059126).
Generating floretion: AB + BA with A = .5'i + .5'ii' + .5'ij' + .5'ik' and B = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki'. - Creighton Dement, Dec 19 2004
FORMULA
G.f.: 16/(2*x-1)^2.
a(n) = 4*A058922(n+2) = 16*A001787(n+1). - Philippe Deléham, Apr 21 2009
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=0} 1/a(n) = log(2)/8.
Sum_{n>=0} (-1)^n/a(n) = log(3/2)/8. (End)
MATHEMATICA
Table[2^(n+4)*(n+1), {n, -1, 100}] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2011 *)
LinearRecurrence[{4, -4}, {0, 16}, 30] (* Harvey P. Dale, Oct 29 2019 *)
PROG
(PARI) a(n) = shift(n+1, n+4)
(PARI) a(n) = { (n + 1)*2^(n + 4) } \\ Harry J. Smith, Jun 25 2009
CROSSREFS
Sequence in context: A190099 A316542 A306057 * A212506 A212512 A317235
KEYWORD
easy,nonn,changed
AUTHOR
Jonas Wallgren, Feb 02 2001
EXTENSIONS
More terms from Benoit Cloitre, Apr 07 2002
Edited by N. J. A. Sloane, Apr 16 2008 at the suggestion of Vim Wenders
STATUS
approved