%I #13 Sep 17 2019 11:36:06
%S 1,1,1,2,1,4,1,1,8,9,2,1,16,55,64,25,6,1,1,32,285,1090,2020,2146,1380,
%T 490,115,20,2,1,64,1351,14000,82115,304752,759457,1308270,1613250,
%U 1484230,1067771,635044,326990,147440,57675,19238,5325,1170,190,20,1,1
%N Triangle a(n,m)=number of m-element antichains on a labeled n-set; number of monotone n-variable Boolean functions with m mincuts (lower units), m=0..binomial(n,floor(n,2)).
%C Row sums give A000372.
%D V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
%H Suresh Govindarajan and Deepak Aditya, <a href="/A059119/b059119.txt">Table of n, a(n) for n = 0..94</a>
%H K. S. Brown, <a href="http://www.mathpages.com/home/kmath030.htm">Dedekind's Problem</a>
%H V. Jovovic and G. Kilibarda, <a href="https://doi.org/10.4213/dm398">On the number of Boolean functions in the Post classes F^{mu}_8</a>, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (<a href="https://doi.org/10.1515/dma.1999.9.6.593">translated</a> in Discrete Mathematics and Applications, 9, (1999), no. 6).
%F a(n, 0) = 1; a(n, 1) = 2^n; a(n, 2) = A016269(n); a(n, 3) = A047707(n); a(n, 4) = A051112(n); a(5, n) = A051113(n); a(6, n) = A051114(n); a(7, n) = A051115(n); a(8, n) = A051116(n); a(9, n) = A051117(n); a(10, n) = A051118(n).
%e [1, 1],
%e [1, 2],
%e [1, 4, 1],
%e [1, 8, 9, 2],
%e [1, 16, 55, 64, 25, 6, 1],
%e [1, 32, 285, 1090, 2020, 2146, 1380, 490, 115, 20, 2], ...
%Y Cf. A000372, A016269, A047707, A051112-A051118.
%K nonn,tabf
%O 0,4
%A _Vladeta Jovovic_, Goran Kilibarda, Jan 06 2001