This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059079 Number of n-element T_0-antichains on a labeled set. 5
 2, 5, 19, 16654, 2369110564675, 5960531437586238714806902334250676, 479047836152505670895481840783987408043359908583921478726185296900312296071642855730299 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point. REFERENCES V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6) V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation. LINKS Vladeta Jovovic, Illustration EXAMPLE a(0) = (1/0!)*[1!*e] = 2; a(1) = (1/1!)*[2!*e] = 5; a(2) = (1/2!)*([4!*e] - 2*[3!*e] + [2!*e]) = 19; a(3) = (1/3!)*([8!*e] - 6*[6!*e] + 6*[5!*e] + 3*[4!*e] - 6*[3!*e] + 2*[2!*e]) = 16654, where [n!*e]=floor(n!*exp(1)). CROSSREFS Cf. A059080-A059083, A059048-A059052, A000522. Sequence in context: A187602 A260140 A270556 * A177494 A136900 A136898 Adjacent sequences:  A059076 A059077 A059078 * A059080 A059081 A059082 KEYWORD hard,nonn AUTHOR Vladeta Jovovic, Goran Kilibarda, Dec 23 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 11:46 EDT 2019. Contains 322330 sequences. (Running on oeis4.)