login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058349
Number of connected labeled series-parallel posets on n nodes.
5
1, 2, 12, 122, 1740, 31922, 715932, 18978122, 580513260, 20125554242, 779832497532, 33398722757402, 1566656717322060, 79879485803841362, 4398701789915269212, 260166428897541369962, 16449181879032096013740, 1107112451498156565581282, 79030557433744270179981372
OFFSET
1,2
COMMENTS
Also, number of labeled blobs with n edges.
REFERENCES
R. C. Read, Graphical enumeration by cycle-index sums: first steps toward a unified treatment, preprint, Sept. 26, 1991.
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39, page 133, g(n).
FORMULA
Read (1991) reference gives generating functions (see PARI code for one example).
A048172(n) = a(n)+A048174(n), n>1.
a(n) = (n-1)!*sum(k=1..n-1, binomial(n+k-1,n-1)*sum(j=1..k, binomial(k,j)*((sum(l=0..j-1, (binomial(j,l)*((-1)^(n-l+j-1)+1)*sum(r=1..j-l, binomial(j-l,r)*2^(j-l-r-1)*(-1)^(r-j)*sum(i=0..r, (r-2*i)^(n-l+j-1)*binomial(r,i))))/(n-l+j-1)!))))), n>1, a(1)=1. - Vladimir Kruchinin, Feb 19 2012
a(n) ~ n^(n-1) / (5^(1/4)*exp(n)*(2-sqrt(5)+log((1+sqrt(5))/2))^(n-1/2)). - Vaclav Kotesovec, Mar 09 2014
MAPLE
(continue from A053554) t1 := log(1+EGF053554): t2 := series(t1, x, 30); SERIESTOLISTMULT(t2);
MATHEMATICA
Drop[ CoefficientList[ InverseSeries[ Series[x + 2*(1 - Cosh[x]) , {x, 0, 19}], y], y], 1]* Range[19]! (* Jean-François Alcover, Sep 21 2011, after g.f. *)
PROG
(PARI) /* Joerg Arndt, Feb 04 2011 */
x='x+O('x^55); t=x+2*(1-cosh(x));
Vec(serlaplace(serreverse(t))) /* show terms */
(Maxima) a(n):=if n=1 then 1 else (n-1)!*sum(binomial(n+k-1, n-1)*sum(binomial(k, j)*((sum((binomial(j, l)*((-1)^(n-l+j-1)+1)*sum(binomial(j-l, r)*2^(j-l-r-1)*(-1)^(r-j)*sum((r-2*i)^(n-l+j-1)*binomial(r, i), i, 0, r), r, 1, j-l))/(n-l+j-1)!, l, 0, j-1))), j, 1, k), k, 1, n-1); /* Vladimir Kruchinin, Feb 19 2012 */
CROSSREFS
A053554(n) = a(n) + A058350(n) (n>=2).
Sequence in context: A034524 A051782 A048173 * A375897 A013469 A372178
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Dec 16 2000
EXTENSIONS
More terms from Joerg Arndt, Feb 04 2011
STATUS
approved