login
A058277
Number of values of k such that phi(k) = n, where n runs through the values (A002202) taken by phi.
23
2, 3, 4, 4, 5, 2, 6, 6, 4, 5, 2, 10, 2, 2, 7, 8, 9, 4, 3, 2, 11, 2, 2, 3, 2, 9, 8, 2, 2, 17, 2, 10, 2, 6, 6, 3, 17, 4, 2, 3, 2, 9, 2, 6, 3, 17, 2, 9, 2, 7, 2, 2, 3, 21, 2, 2, 7, 12, 4, 3, 2, 12, 2, 8, 2, 10, 4, 2, 21, 2, 2, 8, 3, 4, 2, 3, 19, 5, 2, 8, 2, 2, 6, 2, 31, 2, 9, 10
OFFSET
1,1
COMMENTS
Carmichael (1922) conjectured that the number 1 never appears in this sequence. Sierpiński conjectured and Ford (1998) proved that all integers greater than 1 occur in the sequence. Erdős (1958) proved that if s >= 1 appears in the sequence then it appears infinitely often. - Nick Hobson, Nov 04 2006
A002202(n) occurs a(n) times in A007614. - Reinhard Zumkeller, Nov 22 2015
REFERENCES
Édouard Lucas, Théorie des Nombres, Blanchard 1958.
LINKS
R. D. Carmichael, Note on Euler's totient function, Bull. Amer. Math. Soc. 28 (1922), pp. 109-110.
Paul Erdős, Some remarks on Euler's totient function, Acta Arith. 4 (1958), pp. 10-19.
Kevin Ford, The distribution of totients, Electron. Res. Announc. Amer. Math. Soc. 4 (1998), 27-34.
Eric Weisstein's World of Mathematics, Totient Valence Function.
MATHEMATICA
max = 300; inversePhi[_?OddQ] = {}; inversePhi[1] = {1, 2}; inversePhi[m_] := Module[{p, nmax, n, nn}, p = Select[Divisors[m] + 1, PrimeQ]; nmax = m * Times @@ (p/(p-1)); n = m; nn = Reap[While[n <= nmax, If[EulerPhi[n] == m, Sow[n]]; n++]] // Last; If[nn == {}, {}, First[nn] ] ]; Reap[For[n = 1, n <= max, n = If[n == 1, 2, n+2], nn = inversePhi[n] ; If[nn != {} , Sow[nn // Length] ] ] ] // Last // First (* Jean-François Alcover, Nov 21 2013 *)
PROG
(Haskell)
import Data.List (group)
a058277 n = a058277_list !! (n-1)
a058277_list = map length $ group a007614_list
-- Reinhard Zumkeller, Nov 22 2015
(PARI) lista(nmax) = {my(m); for(n = 1, nmax, m = invphiNum(n); if(m > 0, print1(m, ", "))); } \\ Amiram Eldar, Nov 15 2024 using Max Alekseyev's invphi.gp
CROSSREFS
The nonzero terms of A014197.
Cf. A006511 (largest k for which A000010(k) = A002202(n)).
Sequence in context: A320778 A353948 A334049 * A065852 A303998 A319712
KEYWORD
nonn,easy,changed
AUTHOR
Claude Lenormand (claude.lenormand(AT)free.fr), Jan 05 2001
EXTENSIONS
More terms from Nick Hobson, Nov 04 2006
STATUS
approved