OFFSET
1,1
COMMENTS
Carmichael (1922) conjectured that the number 1 never appears in this sequence. Sierpiński conjectured and Ford (1998) proved that all integers greater than 1 occur in the sequence. Erdős (1958) proved that if s >= 1 appears in the sequence then it appears infinitely often. - Nick Hobson, Nov 04 2006
REFERENCES
Édouard Lucas, Théorie des Nombres, Blanchard 1958.
LINKS
T. D. Noe, Table of n, a(n) for n=1..10000
Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
R. D. Carmichael, Note on Euler's totient function, Bull. Amer. Math. Soc. 28 (1922), pp. 109-110.
Paul Erdős, Some remarks on Euler's totient function, Acta Arith. 4 (1958), pp. 10-19.
M. Farrokhi D. G., Gap function to compute the inverse of Euler's totient function.
Kevin Ford, The distribution of totients, Electron. Res. Announc. Amer. Math. Soc. 4 (1998), 27-34.
Nick Hobson, Solution to puzzle 152: Totient valence.
Eric Weisstein's World of Mathematics, Totient Valence Function.
MATHEMATICA
max = 300; inversePhi[_?OddQ] = {}; inversePhi[1] = {1, 2}; inversePhi[m_] := Module[{p, nmax, n, nn}, p = Select[Divisors[m] + 1, PrimeQ]; nmax = m * Times @@ (p/(p-1)); n = m; nn = Reap[While[n <= nmax, If[EulerPhi[n] == m, Sow[n]]; n++]] // Last; If[nn == {}, {}, First[nn] ] ]; Reap[For[n = 1, n <= max, n = If[n == 1, 2, n+2], nn = inversePhi[n] ; If[nn != {} , Sow[nn // Length] ] ] ] // Last // First (* Jean-François Alcover, Nov 21 2013 *)
PROG
(Haskell)
import Data.List (group)
a058277 n = a058277_list !! (n-1)
a058277_list = map length $ group a007614_list
-- Reinhard Zumkeller, Nov 22 2015
(PARI) lista(nmax) = {my(m); for(n = 1, nmax, m = invphiNum(n); if(m > 0, print1(m, ", "))); } \\ Amiram Eldar, Nov 15 2024 using Max Alekseyev's invphi.gp
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Claude Lenormand (claude.lenormand(AT)free.fr), Jan 05 2001
EXTENSIONS
More terms from Nick Hobson, Nov 04 2006
STATUS
approved