login
A058008
Numbers k such that (2*k - 1)!/(k!)^2 is an integer.
6
1, 6, 15, 28, 42, 45, 66, 77, 91, 110, 126, 140, 153, 156, 170, 187, 190, 204, 209, 210, 220, 228, 231, 238, 266, 276, 299, 308, 312, 315, 322, 325, 330, 345, 378, 414, 420, 429, 435, 440, 442, 450, 459, 460, 468, 476, 483, 493, 496
OFFSET
1,2
COMMENTS
Original name was: Numbers n such that gcd(2*n,C(2*n,n))=2*n.
For n a prime power (see A000961) we have gcd(2*n,C(2*n,n))=2. - Arkadiusz Wesolowski, Jul 01 2012
Also, positions where A075055 differs from A000984. - Ralf Stephan, Dec 11 2004
LINKS
FORMULA
Appears to be A067348(n)/2. - Benoit Cloitre, Mar 21 2003
Terms >1 are given by A002503+1. - Benoit Cloitre, Dec 09 2017
MATHEMATICA
Select[Range[500], IntegerQ[(2 # - 1)!/#!^2] &] (* Arkadiusz Wesolowski, Jul 01 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Nov 13 2000
EXTENSIONS
Name changed by Arkadiusz Wesolowski, Jul 01 2012
STATUS
approved