login
A057920
Numbers k such that phi(k+1) divides phi(k), where phi is A000010.
2
1, 3, 5, 13, 15, 35, 37, 61, 73, 104, 119, 157, 164, 193, 194, 255, 277, 313, 397, 421, 455, 457, 495, 527, 541, 545, 584, 613, 629, 661, 665, 673, 733, 757, 877, 975, 997, 1085, 1093, 1153, 1201, 1213, 1237, 1295, 1321, 1381, 1453, 1469, 1621, 1657, 1753
OFFSET
1,2
COMMENTS
The intersection of this sequence and A057919 is A001274. - Michel Marcus, Sep 14 2015
LINKS
EXAMPLE
13 is included because phi(14) = 6 divides phi(13) = 12.
MAPLE
for n from 1 to 2000 do
if modp(numtheory[phi](n), numtheory[phi](n+1)) =0 then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Sep 14 2015
MATHEMATICA
Select[Range[1800], Divisible[EulerPhi[#], EulerPhi[# + 1]] &] (* Amiram Eldar, Jul 13 2019 *)
PROG
(PARI) lista(nn) = for (n=1, nn, if (eulerphi(n) % eulerphi(n+1) == 0, print1(n, ", "))); \\ Michel Marcus, Sep 14 2015
CROSSREFS
Sequence in context: A018753 A073217 A063484 * A018329 A090545 A045411
KEYWORD
nonn
AUTHOR
Leroy Quet, Nov 11 2000
STATUS
approved