login
A057210
Number of fullerenes with 2n vertices (or carbon atoms), counting enantiomorphic pairs as distinct.
4
1, 0, 1, 1, 3, 3, 10, 9, 23, 30, 66, 80, 162, 209, 374, 507, 835, 1113, 1778, 2344, 3532, 4670, 6796, 8825, 12501, 16091, 22142, 28232, 38016, 47868, 63416, 79023, 102684, 126973, 162793, 199128, 252082, 306061, 382627, 461020
OFFSET
10,5
REFERENCES
P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Cambridge Univ. Press, 1995, see p. 32.
LINKS
Gunnar Brinkmann, Table of n, a(n) for n = 10..100 (Received Aug 18, 2006)
Philip Engel and Peter Smillie The number of non-negative curvature triangulations of S^2, arXiv:1702.02614 [math.GT], 2017.
Philip Engel, Jan Goedgebeur, and Peter Smillie, Exact enumeration of fullerenes, arXiv:2304.01655 [math.GT], 2023.
FORMULA
a(n) = (809/1306069401600)*sigma_9(n) + O(n^8) where sigma_9(n) is the ninth divisor power sum, A013957. - Philip Engel, Nov 29 2017
CROSSREFS
Sequence in context: A362469 A286570 A134704 * A330632 A278832 A168376
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 28 2003
STATUS
approved