login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057112 Sequence of 719 adjacent transpositions (a[n] a[n]+1), which, when starting from the identity permutation and applied successively, produce a Hamiltonian circuit/path through all 720 permutations of S_6, in such way that S_{n-1} is always traversed before the rest of S_n. 4
1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 2, 3, 4, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 2, 3, 4, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 2, 3, 4, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 2, 3, 4, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If the 120 permutations of S_5 are connected by adjacent transpositions, the graph produced is isomorphic to the prismatodecachoron (a 4-dimensional polytope) graph (see the Olshevsky link) and this sequence gives directions for a Hamiltonian circuit through its vertices. The first 24 terms give a Hamiltonian path through truncated octahedron's graph (the last path shown in the Karttunen link).

Comment from N. J. A. Sloane: This is the subject of "bell-ringing" or "change-ringing", which has been studied for hundreds of years. See for example Amer. Math. Monthly, Vol. 94, Number 8, 1987, pp. 721-.

LINKS

Table of n, a(n) for n=1..119.

A. Karttunen, Truncated octahedron

G. Olshevsky, Great prismatodecachoron

Index entries for sequences related to bell ringing

FORMULA

tp_seq := [seq(adj_tp_seq(n), n=1..719)];

EXAMPLE

Starting from the identity permutation and applying these transpositions (from right), we get:

[1,2,3,4,5,6,...] o (1 2) ->

[2,1,3,4,5,6,...] o (2 3) ->

[2,3,1,4,5,6,...] o (1 2) ->

[3,2,1,4,5,6,...] o (2 1) ->

[3,1,2,4,5,6,...] o (1 2) ->

[1,3,2,4,5,6,...] o (3 4) ->

[1,3,4,2,5,6,...] o (1 2) ->

[3,1,4,2,5,6,...] o (2 3) ->

[3,4,1,2,5,6,...] o (3 4) etc.

MAPLE

adj_tp_seq := proc(n) local fl, fd, v; fl := fac_base(n); fd := fl[1]; if((1 = fd) and (0 = convert(cdr(fl), `+`))) then RETURN(nops(fl)); fi; if(n < 6) then RETURN(2 - (`mod`(n, 2))); fi; if((0 = convert(cdr(fl), `+`)) and (n < 24)) then RETURN((nops(fl)+1)-fd); fi; if(n < 18) then if(0 = (`mod`(n, 2))) then RETURN(2); else RETURN(4-(`mod`(n, 4))); fi; else if(n < 24) then RETURN(2+(`mod`(n, 2))); else if(n < 120) then if(0 = convert(cdr(fl), `+`)) then RETURN(nops(fl)); else RETURN(adj_tp_seq(`mod`(n, 24))); fi; else if(n < 720) then if(125 = n) then RETURN(5); fi; v := (`mod`(n, 5)); if(0 = v) then v := (n-125)/5; RETURN(adj_tp_seq(v)+(`mod`(v+1, 2))); else if(5 > (`mod`(n, 10))) then RETURN(5-v); else RETURN(v); fi; fi; else if(0 = convert(cdr(fl), `+`)) then RETURN(nops(fl)); fi; RETURN(adj_tp_seq(`mod`(n, 720))); fi; fi; fi; fi; end;

CROSSREFS

Cf. A057113, A055089 (for the Maple definitions of fac_base and cdr), A060135 (palindromic variant of the same idea).

Sequence in context: A263274 A292997 A060135 * A071956 A077767 A322317

Adjacent sequences:  A057109 A057110 A057111 * A057113 A057114 A057115

KEYWORD

nonn,fini

AUTHOR

Antti Karttunen, Aug 09 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 22:04 EST 2018. Contains 318052 sequences. (Running on oeis4.)