login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056652
Integers > 1 whose prime divisors are all Mersenne primes (i.e., of the form (2^p - 1)).
8
3, 7, 9, 21, 27, 31, 49, 63, 81, 93, 127, 147, 189, 217, 243, 279, 343, 381, 441, 567, 651, 729, 837, 889, 961, 1029, 1143, 1323, 1519, 1701, 1953, 2187, 2401, 2511, 2667, 2883, 3087, 3429, 3937, 3969, 4557, 5103, 5859, 6223, 6561, 6727, 7203, 7533, 8001, 8191, 8649, 9261
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..471 from Michael De Vlieger)
FORMULA
Sum_{n>=1} 1/a(n) = - 1 + Product_{p in A000668} p/(p-1) = 0.82292512097260346512... - Amiram Eldar, Sep 27 2020
EXAMPLE
63 is included because the prime factorization of 63 is 3^2 * 7 = (2^2 -1)^2 *(2^3 -1).
MAPLE
isA000668 := proc(n)
if n in [ 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727] then
true;
else
false;
end if;
end proc:
isA056652 := proc(n)
local p;
for p in numtheory[factorset](n) do
if not isA000668(p) then
return false;
end if;
end do:
true ;
end proc:
for n from 2 to 1000 do
if isA056652(n) then
printf("%d, ", n);
end if;
end do: # R. J. Mathar, Feb 19 2017
MATHEMATICA
Block[{nn = 10^4, s}, s = TakeWhile[Select[2^Prime@ Range@ 8 - 1, PrimeQ], # <= nn &]; Select[Range@ nn, AllTrue[FactorInteger[#][[All, 1]], MemberQ[s, #] &] &]] (* Michael De Vlieger, Sep 03 2017 *)
PROG
(PARI) isok(n) = {if (n==1, return (0)); my(f = factor(n)); for (k=1, #f~, if (! ((q=ispower(f[k, 1]+1, , &e)) && isprime(q) && (e==2)), return(0)); ); 1; } \\ Michel Marcus, Apr 25 2016
CROSSREFS
Sequence in context: A316157 A045797 A118555 * A014959 A057233 A125227
KEYWORD
nonn
AUTHOR
Leroy Quet, Aug 09 2000
EXTENSIONS
Offset corrected and more terms added by Michel Marcus, Apr 25 2016
STATUS
approved