OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..471 from Michael De Vlieger)
FORMULA
Sum_{n>=1} 1/a(n) = - 1 + Product_{p in A000668} p/(p-1) = 0.82292512097260346512... - Amiram Eldar, Sep 27 2020
EXAMPLE
63 is included because the prime factorization of 63 is 3^2 * 7 = (2^2 -1)^2 *(2^3 -1).
MAPLE
isA000668 := proc(n)
if n in [ 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727] then
true;
else
false;
end if;
end proc:
isA056652 := proc(n)
local p;
for p in numtheory[factorset](n) do
if not isA000668(p) then
return false;
end if;
end do:
true ;
end proc:
for n from 2 to 1000 do
if isA056652(n) then
printf("%d, ", n);
end if;
end do: # R. J. Mathar, Feb 19 2017
MATHEMATICA
Block[{nn = 10^4, s}, s = TakeWhile[Select[2^Prime@ Range@ 8 - 1, PrimeQ], # <= nn &]; Select[Range@ nn, AllTrue[FactorInteger[#][[All, 1]], MemberQ[s, #] &] &]] (* Michael De Vlieger, Sep 03 2017 *)
PROG
(PARI) isok(n) = {if (n==1, return (0)); my(f = factor(n)); for (k=1, #f~, if (! ((q=ispower(f[k, 1]+1, , &e)) && isprime(q) && (e==2)), return(0)); ); 1; } \\ Michel Marcus, Apr 25 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Aug 09 2000
EXTENSIONS
Offset corrected and more terms added by Michel Marcus, Apr 25 2016
STATUS
approved