login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056637 a(n) is the least prime of class n-, according to the Erdős-Selfridge classification of primes. 27
2, 11, 23, 47, 283, 719, 1439, 2879, 34549, 138197, 1266767, 14920303, 36449279, 377982107, 1432349099, 22111003847, 110874748763 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A prime p is in class 1- if p-1 has no prime factor larger than 3. If p-1 has other prime factors, p is in class (c+1)-, where c- is the largest class of its prime factors. See also A005109.

a(18) <= 619108107719, a(19) <= 19811459447009, a(20) <= 152772264735359. These upper limits can be found by generating class (n+1)- primes from a list of n- class primes; if the latter is sufficiently complete, one can deduce that there is no smaller (n+1)- prime. - M. F. Hasler, Apr 05 2007

LINKS

Table of n, a(n) for n=1..17.

FORMULA

a(n+1) >= 2*a(n)+1, since a(n+1)-1 is even and must have a factor of class n- which is odd (n>1) and >= a(n). a(n+1) <= min { p = 2*k*a(n)+1 | k=1,2,3... such that p is prime }, since a(n) is a prime of class n-. - M. F. Hasler, Apr 05 2007

MATHEMATICA

PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; NextPrime[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; a = Table[0, {15}]; a[[1]] = 2; k = 5; Do[c = ClassMinusNbr[ k]; If[ a[[c]] == 0, a[[c]] = k]; k = NextPrime[k], {n, 3, 7223000}]; a

CROSSREFS

Cf. A005113, A005109, A005110, A005111, A005112, A081424, A081425, A081426, A081427, A081428, A081429, A081430.

Cf. A082449, A129246, A081640, A129248.

Sequence in context: A179878 A126916 A090424 * A141423 A106974 A198277

Adjacent sequences:  A056634 A056635 A056636 * A056638 A056639 A056640

KEYWORD

more,nonn

AUTHOR

Robert G. Wilson v, Jan 31 2001

EXTENSIONS

Extended by Robert G. Wilson v, Mar 20 2003

More terms from Don Reble, Apr 11, 2003. 1432349099 < a(16) <= 25782283783.

a(16) and a(17) from M. F. Hasler, Apr 21 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 00:42 EST 2017. Contains 294957 sequences.