login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055978 A sequence related to Ramanujan's tau function. 0
1, -2, 0, 4, -24, 36, 0, -64, 252, -290, 0, 396, -1472, 1380, 0, -944, 4830, -4248, 0, -1268, -6048, 8040, 0, 12528, -16744, -3706, 0, -20976, 84480, -31284, 0, -31312, -113643, 101542, 0, 152892, -115920, -104792, 0, -96576, 534612, -112914, 0, -369544, -370944, 334864, 0, 603936, -577738, -22554, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,2

REFERENCES

Eichler and Zagier, The Theory of Jacobi Forms, Birkhauser, 1985.

LINKS

Table of n, a(n) for n=4..54.

FORMULA

a(4*n + 2) = 0, a(4*n) = A000594(n) (Ramanujan tau(n)).

Sum_{k>0} a(4*k + 1) * q^(4*k + 1) = (-1) * (q * d/dq theta_2(q^4)) * eta(q^4)^18 * eta(q^16)^2 / eta(q^8). - Michael Somos, Mar 20 2004

Sum_{k>0} a(4*k + 3) * q^(4*k + 3) = (1/2) * (q * d/dq theta_3(q^4)) * eta(q^4)^16 * eta(q^8)^5 / eta(q^16)^2. - Michael Somos, Mar 20 2004

G.f.: x^3 * (Product_{k>0} (1 - x^k) * (1 - x^(4*k))^18 / (1 + x^k)) * (Sum_{k>0} k^2 * x^(k^2)). - Michael Somos, Mar 20 2004

phi_{10, 1}*q*(d/dq){theta_3(z)} where phi_{10, 1} is unique Jacobi cusp form of weight 10 index 1 given by A003784.

EXAMPLE

q^4 - 2*q^5 + 4*q^7 - 24*q^8 + 36*q^9 - 64*q^11 + 252*q^12 - 290*q^13 + ...

PROG

(PARI) {a(n) = local(A); if( n<3, 0, n-=3; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^18 / eta(x^2 + A) * sum( k=1, sqrtint(n), k^2 * x^(k^2)), n))} /* Michael Somos, Mar 20 2004 */

CROSSREFS

A003784, A000594.

Sequence in context: A326215 A248643 A199852 * A245695 A069025 A145962

Adjacent sequences:  A055975 A055976 A055977 * A055979 A055980 A055981

KEYWORD

sign

AUTHOR

Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jul 24 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 14:36 EDT 2019. Contains 328222 sequences. (Running on oeis4.)