%I #17 Mar 13 2016 16:15:33
%S 1,15,105,495,1815,5577,15015,36465,81510,170170,335478,629850,
%T 1133730,1967070,3304290,5393454,8580495,13339425,20309575,30341025,
%U 44549505,64382175,91695825,128849175,178811100,245286756,332863740,447180580
%N Expansion of (1+5*x)/(1-x)^10.
%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
%F a(n)=(2n+3)*C(n+8, 8)/3. G.f.(x)=(1+5x)/(1-x)^10.
%t Table[(2n+3)Binomial[n+8,8]/3,{n,0,30}] (* _Harvey P. Dale_, Aug 20 2011 *)
%o (PARI) Vec((1+5*x)/(1-x)^10 + O(x^100)) \\ _Altug Alkan_, Mar 13 2016
%Y Cf. A054487.
%Y Cf. A093563 ((6, 1) Pascal, column m=9). Partial sums of A054487.
%K easy,nonn
%O 0,2
%A _Barry E. Williams_, Jun 03 2000