login
A055832
T(n,n-5), where T is the array in A055830.
2
8, 30, 73, 145, 255, 413, 630, 918, 1290, 1760, 2343, 3055, 3913, 4935, 6140, 7548, 9180, 11058, 13205, 15645, 18403, 21505, 24978, 28850, 33150, 37908, 43155, 48923, 55245, 62155, 69688, 77880, 86768, 96390
OFFSET
5,1
FORMULA
a(n) = (n-3)*(n-4)*(n^2+13*n+6)/24, n>4, sign corrected Mar 13 2016.
G.f.: x^5*(4-3*x)*(2-x)/(1-x)^5. - R. J. Mathar, Mar 13 2016
E.g.f.: (-72 -120*x -36*x^2 + (72 +48*x -48*x^2 +12*x^3 +x^4)*exp(x))/24. - G. C. Greubel, Jan 21 2020
MAPLE
seq( (n-3)*(n-4)*(n^2+13*n+6)/4!, n=5..40); # G. C. Greubel, Jan 21 2020
MATHEMATICA
Table[(n-3)*(n-4)*(n^2+13*n+6)/4!, {n, 5, 40}] (* G. C. Greubel, Jan 21 2020 *)
PROG
(PARI) a(n) = (n-3)*(n-4)*(n^2+13*n+6)/4!; \\ G. C. Greubel, Jan 21 2020
(Magma) [(n-3)*(n-4)*(n^2+13*n+6)/24: n in [5..40]]; // G. C. Greubel, Jan 21 2020
(Sage) [(n-3)*(n-4)*(n^2+13*n+6)/24 for n in (5..40)] # G. C. Greubel, Jan 21 2020
(GAP) List([5..40], n-> (n-3)*(n-4)*(n^2+13*n+6)/24); # G. C. Greubel, Jan 21 2020
CROSSREFS
Cf. A055830.
Sequence in context: A004639 A317637 A131769 * A195753 A100175 A063489
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 28 2000
STATUS
approved